Citation: ZHU Huai-li, WANG Xi-ming, WANG Xing-jun, YU Guang-suo, WANG Fu-chen. FT-IR and SEM study on the effect of coal rank on its catalytic hydrogasification[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1197-1204. shu

FT-IR and SEM study on the effect of coal rank on its catalytic hydrogasification

  • Corresponding author: WANG Xing-jun,  YU Guang-suo, 
  • Received Date: 1 July 2014
    Available Online: 21 August 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2010CB227000)。 (973计划, 2010CB227000)

  • The effect of coal rank on coal catalytic hydrogasification was studied in a pressured fixed-bed reactor. The catalyst loading, methane release rate and gas composition were compared for coal samples with different ranks. The coal samples and residues were characterized by FT-IR and SEM. The results show that the reactivity of coal decreases with increasing rank of coal without catalyst loading, and the methane release rate from low rank coal is divided into two stages obviously. After adding catalyst, it is suggested that the reactivity of Shenfu bituminous coal performs the best, while that of Zunyi anthracite and Yunnan brown coal is poor. The results of SEM and FT-IR analysis show that the particle surface of high rank coal is smoother and the structure is more compact, and the strength of vibration intensity of aliphatic and aromatic structure increases with decreasing coal rank. All of the differences lead to the different reactivity of catalytic hydrogasification among the coal samples.
  • 加载中
    1. [1]

      [1] XU W C, MATSUOKA K, AKIHO H, KUMAGAI M, TOMITA A. High pressure hydropyrolysis of coalsby using a free-fall reactor[J]. Fuel, 2003, 82(6): 677-685.

    2. [2]

      [2] MOILANEN A, HEINZ J M. Characterization of gasification reactivity of peat chars in pressurized conditions: Effect of product gas inhibition and inorganic material[J]. Fuel, 1996, 75(11): 1279-1285.

    3. [3]

      [3] LEE S H, LEE J G, KIM J H, CHOI Y C. Hydrogasification characteristics of bituminous coals in an entrained-flow hydrogasifier[J]. Fuel, 2006, 85(5/6): 803-806.

    4. [4]

      [4] ZARIFE M, MUAMMER C, ALI S. Hydrogasification of chars under high pressures[J]. Energy Convers Manage, 2007, 48(1): 52-58.

    5. [5]

      [5] 杨景标, 蔡宁生, 李振山. 几种金属催化褐煤焦水蒸气气化的实验研究[J]. 中国电机工程学报, 2007, 27(26): 7-12. (YANG Jing-biao, CAI Ning-sheng, LI Zhen-shan. Experimental study on steam gasification of lignite char catalyzed by several metals[J]. Proceedings of the CSEE, 2007, 27(26): 7-12.)

    6. [6]

      [6] 庞克亮, 向文国, 赵长遂, 奚白. 钾盐对煤焦-CO2气化反应特性的影响[J]. 燃烧科学与技术, 2007, 13(1): 63-66. (PANG Ke-liang, XIANG Wen-guo, ZHAO Chang-sui, XI Bai. Gasificationof coal char -CO2inthe presence of potash[J]. Journal of Combustion Science and Technology, 2007, 13(1): 63-66.)

    7. [7]

      [7] 战书鹏, 王兴军, 洪冰清, 于广锁, 王辅臣. 褐煤催化加氢气化实验[J]. 燃料化学学报, 2012, 40(1): 8-14. (ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-chen. Experimental study on catalytic hydrogasification of lignite[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 8-14.)

    8. [8]

      [8] 杨景标, 蔡宁生, 张彦文. 催化剂添加量对褐煤焦水蒸气气化反应性的影响[J]. 燃料化学学报, 2008, 36(1): 15-22. (YANG Jing-biao, CAI Ning-sheng, ZHANG Yan-wen. Effect ofcatalyst loadingson thegasificationreactivityof alignitechar with steam[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1): 15-22.)

    9. [9]

      [9] YE D P, AGNEW J B, ZHANG D K. Gasification of a south Australian low rank coal with carbon dioxide and steam: Kinetics and reactivity studies[J]. Fuel, 1998, 77(11): 1209-1219.

    10. [10]

      [10] 洪冰清, 陈凡敏, 王兴军, 于广锁. KOH负载量对不同煤样加氢气化效果影响的实验研究[J]. 燃料化学学报, 2012, 40(9): 1032-1037. (HONG Bing-qing, CHEN Fan-min, WANG Xing-jun, YU Guang-suo. Effect of KOH loading on different coals hydrogasification[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1032-1037.)

    11. [11]

      [11] WEN C Y, HUEBLER J. Kinetic study of coal char hydrogasification[J]. Ind Eng Chem Process Des Dev, 1965, 4(2): 142-147.

    12. [12]

      [12] 王西明, 竹怀礼, 王兴军, 刘海峰, 于广锁, 王辅臣. K2CO3热解中的转变对煤焦催化气化的影响[J]. 燃料化学学报, 2014, 42(2): 175-180. (WANG Xi-ming, ZHU Huai-li, WANG Xing-jun, LIU Hai-feng, YU Guang-suo, WANG Fu-chen. Transformation of K2CO3 as a catalyst during coal char pyrolysis and its effect on coal char catalytic gasification[J]. Journal of Fuel Chemistry and Technology, 2014, 42(2): 175-180.)

    13. [13]

      [13] CERNY J. Structural dependence of CH bond absorptivities for FT-IR analysis of coals[J]. Fuel, 1996, 75(11): 1301-1306.

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    8. [8]

      Tingting Wang Chufeng Sun Zhenhua Li Hongling Wang Wenfang Wang Xiaoping Su Lujuan Cui Chenjun Wang . Four-Stage Progressive Teaching Innovation in “Chemical Engineering Principles” for Cultivating Practical Engineering Skills. University Chemistry, 2025, 40(7): 112-118. doi: 10.12461/PKU.DXHX202503052

    9. [9]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    10. [10]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    14. [14]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    16. [16]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    18. [18]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    19. [19]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    20. [20]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

Metrics
  • PDF Downloads(0)
  • Abstract views(358)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return