Citation:
QIU Peng-hua, ZHAO Yan, CHEN Xi-ye, XU Jian-jian, DU Ya-wen, FANG Lai-xi, SUN Shao-zeng. Effects of alkali and alkaline earth metallic species on pyrolysis characteristics and kinetics of Zhundong coal[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(10): 1178-1189.
-
The pyrolysis process of raw (R-form) and acid-washed (H-form) Zhundong coal was investigated by temperature-programmed thermogravimetry, and the kinetic parameters were calculated using distributed activation energy model (DAEM). The results show that the pore structures of Zhundong coal keep abundant in pyrolysis. The presence of alkali and alkaline earth metals (AAEM) has no significant influence on the macromolecular network structure of Zhundong coal, but raises its equilibrium moisture content and release rate of volatiles during the secondary degasification stage. AAEM lowers release rate of volatiles during the main pyrolysis stage and final weight loss. The pyrolysis behavior of Zhundong coal could be described by the DAEM accurately within a wide range of temperature. The pyrolysis activation energy of R-form and H-form coal increases with increasing conversion. The activation energy of R-form coal is higher than that of H-form coal at the same conversion. The maximum value of activation energy distribution function of R-form and H-form coal is 261.85 and 264.51 kJ/mol, respectively. AAEM elevates the pyrolysis activation energy, makes its distribution more concentrated, and reduces the pyrolysis reactivity. The relationship between frequency factor and activation energy presents obvious kinetic compensation effect.
-
-
-
[1]
[1] LI C Z. Advances in the science of Victorian brown coal[M]. Oxford: Elsevier, 2004.
-
[2]
[2] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002. (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002.)
-
[3]
[3] 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3): 382-388. (WANG Jian-guo, ZHAO Xiao-hong. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(3): 382-388.)
-
[4]
[4] 毛婉慧, 庄新国, 周继兵, 阮传明, 雷国明. 煤相参数在煤层层序划分中的应用[J]. 煤田地质与勘探, 2011, 39(2): 6-10. (MAO Wan-hui, ZHUANG Xin-guo, ZHOU Ji-bing, RUAN Chuan-ming, LEI Guo-ming. Application of coal facies parameters in sequence stratigraphic division of coal seams: With Zhangnanxi coal district, Junggar basin as example[J]. Coal Geology & Exploration, 2011, 39(2): 6-10.)
-
[5]
[5] 杨忠灿, 刘家利, 何红光. 新疆准东煤特性研究及其锅炉选型[J]. 热力发电, 2010, 8: 44-46. (YANG Zhong-can, LIU Jia-li, HE Hong-guang. Study on properties of Zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J]. Thermal Power Generation, 2010, 8: 44-46.)
-
[6]
[6] 陈川, 张守玉, 施大钟, 刘大海. 准东煤脱钠提质研究[J]. 煤炭转化, 2013, 36(4): 14-18. (CHEN Chuan, ZHANG Shou-yu, SHI Da-zhong, LIU Da-hai. Study on sodium removal for Zhundong coal upgrading[J]. Coal Conversion, 2013, 36(4): 14-18.)
-
[7]
[7] 孟建强. 准东煤燃烧及结渣特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. (MENG Jian-qiang. Research on combustion and slgging characteristics of Zhundong coal[D]. Harbin: Harbin Institute of Technology, 2013.)
-
[8]
[8] SOLOMON P R, SERIO M A, DESPANDE G V, KROO E. Cross-linking reactions during coal conversion[J]. Energy Fuels, 1990, 4(1): 42-54.
-
[9]
[9] SERIO M A, KROO E, TENG H, SOLOMON P R. The effects of moisture and cations on liquefaction of low rank coals[J]. Prepr Pap Am Chem Soc Div Fuel Chem, 1993, 38: 577-586.
-
[10]
[10] WORNAT M J, NELSON P F. Effects of ion-exchanged calcium on brown coal tar composition as determined by fourier transform infrared spectroscopy[J]. Energy Fuels, 1992, 6(2): 136-142.
-
[11]
[11] SHIBAOKA M, OHTSUKA Y, WORNET M J, THOMAS C G, BENNETT A J R. Application of microscopy to the investigation of brown coal pyrolysis[J]. Fuel, 1995, 74(11): 1648-1653.
-
[12]
[12] WORNAT M J, SAKUROVS R. Proton magnetic resonance thermal analysis of a brown coal: Effects of ion-exchanged metals[J]. Fuel, 1996, 75(7): 867-871.
-
[13]
[13] SATHE C, PANG Y Y, LI C Z. Effects of heating rate and ion-exchangeable cations on the pyrolysis yields from a Victorian brown coal[J]. Energy Fuels, 1999, 13(3): 748-755.
-
[14]
[14] LI C Z, SATHE C, KERSHAW J R, PANG Y. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(3): 427-438.
-
[15]
[15] QUYN D M, WU H W, BHATTACHARYA S P, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic apecies during the pyrolysis and gasification of Victorian brown coal. Part II. Effects of chemical form and valence[J]. Fuel, 2002, 81(2): 151-158.
-
[16]
[16] SATHE C, HAYASHI J-I, LI C Z, CHIBAB T. Combined effects of pressure and ion-exchangeable metallic species on pyrolysis of Victorian lignite[J]. Fuel, 2003, 82(3): 343-350.
-
[17]
[17] QUYN D M, WU H W, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002, 81(2): 143-149.
-
[18]
[18] WU H W, HAYASHIB J-I, CHIBA T, TAKARADA T, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part V. Combined effects of Na concentration and char structure on char reactivity[J]. Fuel, 2004, 83(1): 23-30.
-
[19]
[19] ZENG C, FAVAS G, WU H W, CHAFFEE A L, HAYASHI J-I, LI C Z. Effects of pretreatment in steam on the pyrolysis behavior of Loy Yang brown coal[J]. Energy Fuels, 2006, 20(1): 281-286.
-
[20]
[20] LIU Q R, HU H Q, ZHOU Q, ZHU S W, CHEN G H. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis[J]. Fuel, 2004, 83(6): 713-718.
-
[21]
[21] 张妮, 曾凡桂, 降文萍. 中国典型动力煤种热解动力学分析[J]. 太原理工大学学报, 2005, 36(5): 549-552. (ZHANG Ni, ZENG Fan-gui, LONG Wen-ping. Pyrolysis kinetics analysis of chinese typical steam coals[J]. Journal of Taiyuan University of Technology, 2005, 36(5): 549-552.)
-
[22]
[22] 王俊琪, 方梦祥, 骆仲泱, 岑可法. 煤的快速热解动力学研究[J]. 中国电机工程学报, 2007, 27(17): 18-22. (WANG Jun-qi, FANG Meng-xiang, LUO Zhong-yang, CEN Ke-fa. Research on fast thermolysis kinetics of coal[J]. Proceedings of the CSEE, 2007, 27(17): 18-22.)
-
[23]
[23] 何佳佳, 邱朋华, 吴少华. 升温速率对煤热解特性影响的TG/DTG分析[J]. 节能技术, 2007, 25(4): 321-325. (HE Jia-jia, QIU Peng-hua, WU Shao-hua. Study on the effects of heating-up speed to coal pyrolysis with TG/DTG analysis[J]. Energy Conservation Technology, 2007, 25(4): 321-325.)
-
[24]
[24] ARENILLAS A, RUBIERA F, PEVIDA C, PIS J J. A comparison of different methods for predicting coal devolatilisation kinetics[J]. J Anal Appl Pyrolysis, 2001, 58: 685-701.
-
[25]
[25] YU J, ZHANG M C. A simple method for predicting the rate constant of pulverized-coal pyrolysis at higher heating rate[J]. Energy Fuels, 2003, 17(4): 1085-1090.
-
[26]
[26] 杨景标, 张彦文, 蔡宁生. 煤热解动力学的单一反应模型和分布活化能模型比较[J]. 热能动力工程, 2010, 25(3): 301-305. (YANG Jing-biao, ZHANG Yan-wen, CAI Ning-sheng. A comparison of a single reaction model with a distributed activation energy one based on coal pyrolysis kinetics[J]. Journal of Engineering for Thermal Energy and Power, 2010, 25(3): 301-305.)
-
[27]
[27] 李爽, 杨斌, 冯秀燕, 梁闻斌, 马志超, 马晓迅. 典型陕北长焰煤热解行为及其动力学实验研究[J]. 大连理工大学学报, 2013, 53(3): 333-339. (LI Shuang, YANG Bin, FENG Xiu-yan, LIANG Wen-bin, MA Zhi-chao, MA Xiao-xun. Experimental study of typical Shanbei long flame coals pyrolysis kinetics[J]. Journal of Dalian University of Technology, 2013, 53(3): 333-339.)
-
[28]
[28] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12/13): 1664-1683.
-
[29]
[29] VAND V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[J]. Proc Phys Soc, 1942, 55(3): 222-246.
-
[30]
[30] PITT G J. The kinetics of the evolution of volatile products from coal[J]. Fuel, 1962, 41(3): 267-274.
-
[31]
[31] MIURA K, MAKI T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy Fuels, 1998, 12(5): 864-869.
-
[32]
[32] SENNECA O, SALATINO P, MASI S. Microstructural changes and loss of gasification reactivity of chars upon heat treatment[J]. Fuel, 1998, 77(13): 1483-1493.
-
[33]
[33] MAN C K, JACOBS J, GIBBINS J R. Selective maceral enrichment during grinding and effect of particle size on coal devolatilisation yields[J]. Fuel Process Technol, 1998, 56(3): 215-227.
-
[34]
[34] BADZIOCH S, HAWKSLEY PETER G W. Kinetics of thermal decomposition of pulverized coal particles[J]. Ind Eng Chem Process Des Dev, 1970, 9(4): 521-530.
-
[35]
[35] 张超群, 蔡巍, 李学恒, 魏砾宏, 姜秀民. 超细鹤岗烟煤热解实验研究及动力学参数分析[J]. 煤炭转化, 2006, 29(1): 41-44. (ZHANG Chao-qun, CAI Wei, LI Xue-heng, WEI Li-hong, JIANG Xiu-ming. Experimental research and computation analysis of pyrolysis kinetic characteristics of micro-pulverized Hegang coal[J]. Coal Conversion, 2006, 29(1): 41-44.)
-
[36]
[36] 王俊宏, 常丽萍, 谢克昌. 西部煤的热解特性及动力学研究[J]. 煤炭转化, 2006, 32(3): 1-5. (WANG Jun-hong, CHANG Li-ping, XIE Ke-cang. Study on the pyrolysis and kinetics of coal of western China[J]. Coal Conversion, 2006, 32(3): 1-5.)
-
[37]
[37] 袁传杰, 黄雪莉. 新疆沙尔湖褐煤的结构与热解特性[J]. 煤质技术, 2013, 3: 1-4. (YUAN Chuan-jie, HUANG Xue-li. Analysis on the structure and pyrolysis characteristics of the lignite in Shaer Lake of Xinjiang[J]. Coal Quality Technology, 2013, 3: 1-4.)
-
[38]
[38] 虞继舜. 煤化学[M]. 北京: 冶金工业出版社, 2000. (YU Ji-yu. Coal chemistry[M]. Beijing: Metallurgical Industry Press, 2000.)
-
[39]
[39] 陈晓平, 顾利锋, 韩晓强, 赵长遂, 刘道银. 污泥及其与煤混合物的热解特性和灰熔融特性[J]. 东南大学学报(自然科学版), 2008, 38(6): 1038-1043. (CHEN Xiao-ping, GU Li-feng, HAN Xiao-qiang, ZHAO Chang-sui, LIU Dao-yin. Pyrolysis characteristics and ash fusion property of sludge and blended fuel of sludge and coal[J]. Journal of Southeast University(Natural Science Edition), 2008, 38(6): 1038-1043.)
-
[40]
[40] SCHAFER H N S. Factors affecting the equilibrium moisture contents of low-rank coals[J]. Fuel, 1972, 51(1): 4-9.
-
[41]
[41] ALLARDICE D J, CLEMOW L M, FAVAS G, JACKSON W R, MARSHALL M, SAKUROVS R. The characterisation of different forms of water in low rank coals and some hydrothermally dried products[J]. Fuel, 2003, 82(6): 661-667.
-
[42]
[42] 范晓雷, 杨帆, 张薇, 周志杰, 王辅臣, 于遵宏. 热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J]. 燃料化学学报, 2006, 34(4): 395-398. (FAN Xiao-lei, YANG Fan, ZHANG Wei, ZHOU Zhi-jie, WANG Fu-chen, YU Zun-hong. Variation of the crystalline structure of coal char during pyrolysis and its effect on gasification reactivity[J]. Journal of Fuel Chemistry and Technology, 2006, 34(4): 395-398.)
-
[43]
[43] 许慎启, 周志杰, 代正华, 于广锁, 龚欣. 碱金属及灰分对煤焦碳微晶结构及气化反应特性的影响[J]. 高校化学工程学报, 2010, 24(1): 64-70. (XU Shen-qi, ZHOU Zhi-jie, DAI Zheng-hua, YU Guang-suo, GONG Xin. Effects of alkalimetal and ash on crystallite structure of coal char during pyrolysis and on gasification reactivity[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(1): 64-70.)
-
[44]
[44] 熊杰, 周志杰, 许慎启, 于广锁. 碱金属对煤热解和气化反应速率的影响[J]. 化工学报, 2011, 62(1): 192-198. (XIONG Jie, ZHOU Zhi-jie, XU Shen-qi, YU Guang-suo. Effect of alkali metal on rate of coal pyrolysis and gasification[J]. Journal of Chemical Industry and Engineering(China), 2011, 62(1): 192-198.)
-
[45]
[45] 吴波. 神东和平朔煤在不同反应器中的热解特性[D]. 大连: 大连理工大学, 2009. (WU Bo. Pyrolysis performances of Shendong and Pingshuo coals in different reactors[D]. Dalian: Dalian University of Technology, 2009.)
-
[46]
[46] 黄江城, 马晓飞, 王春波. 褐煤低温干馏特性实验研究[J]. 华北电力大学学报(自然科学版), 2013, 40(1): 103-106. (HUANG Jiang-cheng, MA Xiao-fei, WANG Chun-bo. Experiment research on characteristics of lignite carbonization at low temperature[J]. Journal of North China Electric Power University(Natural Science Edition), 2013, 40(1): 103-106.)
-
[47]
[47] 韩峰, 蒙爱红, 鲁伟, 张衍国, 李清海. 沙尔湖褐煤和红沙泉不粘煤的热解动力学及热解产物分布[J]. 清华大学学报(自然科学版), 2013, 53(3): 348-352. (HAN Feng, MENG Ai-hong, LU Wei, ZHANG Yan-guo, LI Qing-hai. Pyrolysis kinetics and product distribution of two coals[J]. Journal of Tsinghua University(Science and Technology), 2013, 53(3): 348-352.)
-
[1]
-
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[3]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[4]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[5]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[6]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[7]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[8]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[9]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[10]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[11]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[12]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[13]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[14]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[15]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[16]
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
-
[17]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[18]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[19]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[20]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(466)
- HTML views(42)