Citation: GUO Hui-qing, XIE Li-li, WANG Xin-long, LIU Fen-rong, WANG Mei-jun, HU Rui-sheng. Sulfur removal and release behaviors of sulfur-containing model compounds during pyrolysis under inert atmosphere by TG-MS connected with Py-GC[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1160-1166. shu

Sulfur removal and release behaviors of sulfur-containing model compounds during pyrolysis under inert atmosphere by TG-MS connected with Py-GC

  • Corresponding author: LIU Fen-rong, 
  • Received Date: 20 May 2014
    Available Online: 8 August 2014

    Fund Project: Supported by Natural Science Foundation of China (21466025) (21466025) the Natural Science Foundation of Inner Mongolia (2013MS0205) (2013MS0205)the State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology(2014). (2014)

  • Sulfur containing model compounds, tetradecyl mercaptan, dibutyl sulfide, phenyl sulfide, 2-methyl thiophene, benzothiophene and dibenzothiophene, were selected to investigate their sulfur removal and release behaviors during pyrolysis under inert atmosphere by thermo-gravimetric analyzer with mass spectrometer (TG-MS) and pyrolysis connected with gas chromatogram (Py-GC). It was found that the order of sulfur removal was tetradecyl mercaptan > dibutyl sulfide > 2-methyl thiophene > benzo thiophene > phenyl sulfide > dibenzothiophene. Except for phenylsulfide, this rule is contrary to the decomposition temperature order of the sulfur functional groups. SO2 evolution was detected by MS and GC for all those model compounds and COS evolution was also found except for phenylsulfide and dibenzothiophene; while H2S evolution was measured only for tetradecyl mercaptan, dibutyl sulfide and 2-methyl thiophene. However, SO2 content was much higher than H2S and COS in pyrolysis gas for each model compound, which may be caused by that indigenous hydrogen was much less than indigenous oxygen under inert atmosphere, when actived carbon was used as carrier. Thus, most of sulfur radicals can connect with indigenous oxygen and release in the form of SO2. For phenyl sulfide, benzothiophene and dibenzothiophene, as their indigenous hydrogen was not enough to react with sulfur radicals, no H2S was detected during pyrolysis under inert atmosphere, while SO2 was found and its content was very high in pyrolysis gas.
  • 加载中
    1. [1]

      [1] HUANG C, LINKOUS C A, ADEBIYI O, T-RAISSIET A. Hydrogen production via photolytic oxidation of aqueous sodium sulfite solutions[J]. Environ Sci Technol, 2010, 44(13): 5283-5288.

    2. [2]

      [2] YU J, YIN F, WANG S, CHANG L, GUPTA S. Sulfur removal property of activated-char-supported Fe-Mo sorbents for integrated cleaning of hot coal gases[J]. Fuel, 2013, 108(6): 91-98.

    3. [3]

      [3] YU J, CHANG L, XIE W, WANG D. Correlation of H2S and COS in the hot coal gas stream and its importance for high temperature desulfurization[J]. Korean J Chem Eng, 2011, 28(4): 1054-1057.

    4. [4]

      [4] XU G, YANG Y, LU S, LI L,SONG X. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process[J]. Energy Policy, 2011, 39(5): 2343-2351.

    5. [5]

      [5] ATTAR A. Chemistry, thermodynamics and kinetics of reactions of sulphur in coal-gas reactions: A review[J]. Fuel, 1978, 57(4): 201-212.

    6. [6]

      [6] YAN J, YANG J, LIU Z. SH radical: The key intermediate in sulfur transformation during thermal processing of coal[J]. Environ Sci Technol, 2005, 39(13): 5043-5051.

    7. [7]

      [7] MULLENS S, YPERMAN J, REGGERS G, CARLEERA R, BUCHANAN A.C, BRITT P F, RUTKOWSKI P, GRYGLEWICZ G. A study of the reductive pyrolysis behaviour of sulphur model compounds[J]. J Anal Appl Pyrolysis, 2003, 70(2): 469-491.

    8. [8]

      [8] MAES II, GRYGLEWICZ G, YPERMAN J, FRANCO DV, D'HAES J, D'OLIESLAEGERS M, VAN POUKE LC. Effect of siderite in coal on reductive pyrolytic analyses[J]. Fuel, 2000, 79(15): 1873-1881.

    9. [9]

      [9] MAES II, YPERMAN J, VAN DEN RUL H, FRANCO D V, MULLENS J, VAN POUCKE L C, GRYGLEWICZ G, WILK P. Study of coal-derived pyrite and its conversion products using atmospheric pressure temperature-programmed reduction (AP-TPR)[J]. Energy Fuels, 1995, 9(6): 950-955.

    10. [10]

      [10] YI P, YU Q, ZONG H. The chemical thermodynamics analysis of pyrite desulfurization[J]. Coal Convers, 1999, 22(1): 48-52.

    11. [11]

      [11] SUGAWARA K, ENDA Y, SUGAWARA T, SHIRAI M. XANES analysis of sulfur form change during pyrolysis of coals[J]. Synchrot Radiat, 2001, 8(2): 955-957.

    12. [12]

      [12] MIURA K, MAE K, SHIMADA M, MINAMI H. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals[J]. Energy fuels, 2001, 15(3): 629-636.

    13. [13]

      [13] XU L, YANG J, LI Y, LIU Z. Behavior of organic sulfur model compounds in pyrolysis under coal-like environment[J]. Fuel Process Technol, 2004, 85(8): 1013-1024.

    14. [14]

      [14] KARR JR C. Analytical methods for coal and coal products[J]. Academic Press,1979, 19(3): 588-624.

    15. [15]

      [15] [JP6]KATSUYASU S,KEIKO A, TAKUO S. Dynamic behavior of sulfur forms in rapid pyrolysis of density-separated coals[J]. Fuel, 1995, 74(12): 1823-1829.

    16. [16]

      [16] SUGAWARA K, TOZUKA Y, KAMOSHITA T, TAKUO S, MARK A S. Dynamic behaviour of sulfur forms in rapid pyrolysis of density-separated coals[J]. Fuel, 1994, 73(7): 1224-1228.

    17. [17]

      [17] LIU F, LI W, CHEN H, LI B. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel, 2007, 86(3): 360-366.

    18. [18]

      [18] [JP5]刘粉荣, 郭慧卿, 胡瑞生, 赫淑颖, 胡浩权. 含硫模型化合物在不同载体上的担载及其燃烧过程硫的释放行为[J]. 化工进展, 2012, 31(11): 2570-2573.

    19. [19]

      (LIU Fen-rong, GUO Hui-qing, HU Ru-sheng, HE Shu-ying, HU Hao-quan. A study on the loading behavior of sulfur-containg compounds on the different carriers and sulfur release behavior during combustion process[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2570-2573.)

    20. [20]

      [19] 刘粉荣, 李文, 李保庆, 陈皓侃. 氧化性气氛下流化床中煤的热解脱硫及硫的分布[J]. 燃料化学学报, 2006, 34(4): 404-407.

    21. [21]

      (LIU Fen-rong, LI Wen, CHEN Hao-kan, LI Bao-qing. Sulfur removal and its distribution during coal pyrolysis in fluidized bed reactor under oxidative atmospheres[J]. Journal of Fuel Chemistry and Technology, 2006, 34(4): 404-407.)

    22. [22]

      [20] LIU F, LI W, CHEN H, LI B. Gas analysis and sulfur removal from coal during fluidized bed pyrolysis under different oxygen contents[C]. 2005 ICCS&T Okinawa, 2005-10.

    23. [23]

      [21] 刘粉荣, 李文, 郭慧卿, 李保庆, 白宗庆, 胡瑞生. XPS法研究煤表面碳官能团的变化及硫迁移行为[J]. 燃料化学学报, 2011, 39(2): 81-84.

    24. [24]

      (LIU Fen-rong, LI Wen, GUO Hui-qing, LI Bao-qing, BAI Zong-qing, HU Rui-sheng. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface[J]. Journal of Fuel Chemistry and Technology, 2011, 39(2): 81-84.)

    25. [25]

      [22] LIU F, LI B, LI W, BAI Z, YPERMAN J. Py-MS study of sulfur behavior during pyrolysis of high-sulfur coals under different atmospheres[J]. Fuel Process Technol, 2010, 91(11): 1486-1490.

    26. [26]

      [23] MAJCHROWICZ. B, YPERMAN. J, MULLENS J, VAN POUCKE. L. Automated potentiometric determination of sulfur functional groups in fossil fuels[J]. Anal Chem, 1991, 63(8): 760-763.

    27. [27]

      [24] YPERMAN J, MAES II, VAN DEL RUL H, MULLENS S, VAN AELST J, FRANCO D, JULES M, LUCIEN C, POUCKE V. Sulphur group analysis in solid matrices by atmospheric pressure-temperature programmed reduction[J]. Anal Chim Acta, 1999, 395(1): 143-155.

    28. [28]

      [25] VAN AELST J, YPERMAN J, FRANCO D, VAN POUCKE L, BUCHANAN A, BRITT P. Study of silica-immobilized sulfur model compounds as calibrants for the AP-TPR study of oxidized coal samples[J]. Energy Fuels, 2000, 14(5): 1002-1008.

  • 加载中
    1. [1]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    4. [4]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    11. [11]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    14. [14]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    15. [15]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

Metrics
  • PDF Downloads(0)
  • Abstract views(756)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return