Citation: WANG Yu-guang, SUN Liang-liang, LUO Ling-hong, WU Ye-fan, LIU Li-li, SHI Ji-jun. The study of portable direct-flame solid oxide fuel cell (DF-SOFC) stack with butane fuel[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1135-1139. shu

The study of portable direct-flame solid oxide fuel cell (DF-SOFC) stack with butane fuel

  • Corresponding author: SUN Liang-liang, 
  • Received Date: 16 April 2014
    Available Online: 21 June 2014

  • In this study, a portable direct-flame solid oxide fuel cell (DF-SOFC) stack has been demonstrated using the conventional butane gas as fuel. The stack is constructed by bundles of the 3 single cells in a series with conventional Ni/YSZ anode. The fuel cell structure and performance are characterized by scanning electron microscopy (SEM) and electrochemical workstation, respectively. The results show that the stack presents an open circuit voltage (OCV) of about 2.1 V and an output power of 0.24 W, which powers an USB fan in 4 h. The cell voltage is quite stable for 4 h, moreover, no carbon deposition is found in the anode layer. This indicates that the DF-SOFC stack can be used for portable applications.
  • 加载中
    1. [1]

      [1] TAO S W, IRVINE J T S. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nat Mater, 2003, 2(2): 320-323.

    2. [2]

      [2] SEUNGDOO P, JOHN M V, RAYMOND J G. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(16): 265-267.

    3. [3]

      [3] MICHAEL B P, JONATHAN M, GREGORY S J, BRYAN W E, ANTHONY M D, ROBERT A W. Hydrocarbon fuels in solid oxide fuel cells: In situ Raman studies of graphite formation and oxidation[J]. J Phys Chem C, 2008, 112(12): 5232-5240.

    4. [4]

      [4] STEVEN M, RAYMOND J G. Direct hydrocarbon solid oxide fuel cells[J]. Chem Rev, 2004, 104(10): 4845-4865.

    5. [5]

      [5] HAWKES A, LEACH M. Solid oxide fuel cell systems for residential micro-combined heat and power in the UK: Key economic drivers[J]. J Power Sources, 2005, 149(1): 72-83.

    6. [6]

      [6] SHAO Z P, HAILE S M. Anode-supported thin film fuel cells operated in a single chamber configuration[J]. Nature, 2004, 431(1): 170-173.

    7. [7]

      [7] KRNEMAYER H, BARZAN D, HORIUCHI M, SUGANUMA S, TOKUTAKE Y, SCHULZ C, BESSLER W G. A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane[J]. J Power Sources, 2007, 166(1): 120-126.

    8. [8]

      [8] HORIUCHI M, KATAGIRI F, YOSHⅡKE J, SUGANUMA S, TOKUTAKE Y, KRONEMAYER H, BESSLER W G. Performance of a solid oxide fuel cell couple operated via in situ catalytic partial oxidation of n-butane[J]. J Power Sources, 2009, 189(2): 950-957.

    9. [9]

      [9] WANG K, RAN R, HAO Y, SHAO Z P, JIN W Q, XU N P. A high-performance no-chamber fuel cell operated on ethanol flame[J]. J Power Sources, 2008, 177(1): 33-39.

    10. [10]

      [10] SUN L L, HAO Y, ZHANG C M, RAN R, SHAO Z P. Coking-free direct-methanol-flame fuel cell with traditional nickel-cermet anode[J]. Int J Hydrogen Energy, 2010, 35(15): 7971-7981.

    11. [11]

      [11] HORIUCI M, SUGANUMA S, WATANABE M. Electrochemical power generation directly from combustion flame of gases, liquids, and solids[J]. J Electrochem Soc, 2004, 151(2): A1402-A1405.

    12. [12]

      [12] HORIUCI M, SUGANUMA S, WATANABE M, TOKUTAKE Y. Proceedings of the sixth european solid oxide fuel cell forum, lucerne[D]. Switzerland, 2004: 154-162.

    13. [13]

      [13] WANG K, ZENG P Y, AHN J. High performance direct flame fuel cell using a propane flame[J]. Combust Inst, 2011, 33(2): 3431-3437.

    14. [14]

      [14] SMITH J. Kitchen afloat: Galley management and meal preparation[D]. Sheridan House, 2002: 47-49.

    15. [15]

      [15] ZHANG C M, SUN L L, RAN R, SHAO Z P. Activation of a single-chamber solid oxide fuel cell by a simple catalyst-assisted in-situ process[J]. Electrochem Commun, 2009, 11(8): 1563-1566.

    16. [16]

      [16] GODICKEMEIER M, GAUCKLER L J. Engineering of solid oxide fuel cells with ceria-based electrolytes[J]. J Electrochem Soc, 1998, 145(2): 414-421.

    17. [17]

      [17] RIESS I. Mixed ionic-electronic conductors-material properties and applications[J]. Solid State Ionics, 2003, 157(1): 1-17.

  • 加载中
    1. [1]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    4. [4]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    5. [5]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    16. [16]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    17. [17]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(707)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return