Citation: MA Jian, LIU Dong-mei, WEI Min, WANG Hai-yan, WANG Kun, ZHANG Jing-wei. Effect of Na2CO3 solution treatment on the performance of Ni-Mo/ZSM-5 catalyst in thioetherfication[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1128-1134. shu

Effect of Na2CO3 solution treatment on the performance of Ni-Mo/ZSM-5 catalyst in thioetherfication

  • Corresponding author: WANG Hai-yan, 
  • Received Date: 14 March 2014
    Available Online: 18 June 2014

    Fund Project: 辽宁省自然科学基金(201202126)。 (201202126)

  • ZSM-5 zeolites were treated by alkali Na2CO3 solution; the effect of treatment temperature and time on the structural feature and physical and chemical properties of ZSM-5 zeolites were investigated. The ZSM-5 samples before and after alkali treatment were characterized by XRD, N2 sorption, XRF, SEM and NH3-TPD. With n-butyl mercaptan and isoprene as the model compounds for thioetherfication, the activity of Ni-Mo/HZSM-5 prepared from alkali treated HZSM-5 zeolites with micro- and meso-porous structure were evaluated. The results show that the original zeolite frame structure is reserved after Na2CO3 solution treatment; moreover, the performance of the Ni-Mo/HZSM-5 catalyst in thioetherfications is improved and the modification process was gentle and controllable. An appropriate increase of the treatment temperature and treatment time was beneficial to the increase of surface area, meso-pore volume and average pore size, as well as the regulation of the acid properties without affecting the microporous structure. However, excessive long treatment time was disadvantageous to the formation of mesopores and the modulation of acidity. The Ni-Mo/HZSM-5 catalyst from ZSM-5 treated with Na2CO3 solution at 90℃ for 5 h exhibits high thioetherfication performance; the conversions of n-butyl mercaptan and isoprene reach 92.36% and 97.33%, respectively.
  • 加载中
    1. [1]

      [1] HEARN D. Process for the removal of mercaptans and hydrogen sulfide from hydrocarbon streams: US, 5510568. 1996-04-23.

    2. [2]

      [2] PODREBARAC G G, GILDERT G R. Process for sulfur reduction in naphtha sreams: US, 6444118. 2002-09-03.

    3. [3]

      [3] HEARN D, GILDERT G R, PUTMAN H M. Process for removal of mercaptans from hydrocarbon streams: US, 6440299. 2002-10-27.

    4. [4]

      [4] 申志兵, 柯明, 宋昭峥, 蒋庆哲. 硫醚化脱除FCC汽油中硫醇和二烯烃研究进展[J]. 化学工业与工程, 2010, 27(6): 544-550. (SHEN Zhi-bing, KE Ming, SONG Zhao-zheng, JIANG Qing-zhe. Review for thioetherification in reducing mercaptan and diene of FCC gasoline[J]. Chemical Industry and Engineering, 2010, 27(6): 544-550.)

    5. [5]

      [5] DEBUISSCHERT Q. Prime-G+ commercial performance of FCC naphtha desulfurization technology. San Antonio: 2003 NPRA Annual Meeting, 2003.

    6. [6]

      [6] ROCK K, SHOREY S. Producing low sulfur gasoline reliably. San Antonio: 2003 NPRA Annual Meeting, 2003.

    7. [7]

      [7] 董海明, 曲云, 孙丽琳. Prime-G+技术在催化裂化汽油加氢脱硫装置上的应用[J]. 石油炼制与化工, 2012, 43(11): 27-30. (DONG Hai-ming, QU Yun, SUN Li-lin. Application of Prime-G+ technology in FCC naphtha hydrodesulfurization unit[J]. Petroleum Processing and Petrochemicals, 2012, 43(11): 27-30.)

    8. [8]

      [8] 张星, 孙方宪, 尹恩杰, 许新刚. CDHydro/CDHDS FCC汽油选择性加氢脱硫工艺设计[J]. 炼油技术与工程, 2010, 40(1): 6-9. (ZHANG Xing, SUN Fang-xian, YIN En-jie, XU Xin-gang. Process design of CDHydro and CDHDS for selective hydrodesulfurization of FCC naphtha[J]. Petroleum Refinery Engineering, 2010, 40(1): 6-9.)

    9. [9]

      [9] 肖招金, 黄星亮. 镍基催化剂上硫醇与异戊二烯硫醚化反应的研究[J]. 分子催化, 2005, 19(4): 280-284. (XIAO Zhao-jing, HUANG Xing-liang. Study of mercaptans and isoprene thioetherfication reaction on nickel catalyst[J]. Journal of Molecular Catalysis, 2005, 19(4): 280-284.)

    10. [10]

      [10] 肖招金, 黄星亮, 童宗文. 制备条件对二烯硫醚化催化剂Ni/Al2O3催化性能的影响[J].石油炼制与化工, 2006, 37(5): 24-28. (XIAO Zhao-jin, HUANG Xing-liang, HUANG Zong-wen. Effect of preparation conditions on the catalytic properties of Ni catalyst in the diene thioetherfication reaction[J]. Petroleum Processing and Petrochemicals, 2006, 37(5): 24-28.)

    11. [11]

      [11] 申志兵, 柯明, 刘基扬. Ni/Al2O3对硫醇与异戊二烯硫醚化反应的催化性能研究[J]. 石油炼制与化工, 2010, 41(11): 37-42. (SHEN Zhi-bing, KE Ming, LIU Ji-yang. Catalytic performance of Ni/Al2O3 catalyst on mercaptan and isoprene thioetherifation[J]. Petroleum Processing and Petrochemicals, 2010, 41(11): 37-42.)

    12. [12]

      [12] 周志远, 黄星亮, 张燕, 李健. 二烯硫醚化酸性催化剂研究//第十一届全国青年催化会议论文集. 北京: 科学出版社, 2007: 69-70. (ZHOU Zhi-yuan, HUANG Xing-liang, ZHAO Yan, LI Jian. Study of acid catalyst in the diene thioetherfication reaction//The 11th national youth catalytic conference proceedings. Beijing: Science Press, 2007: 69-70.)

    13. [13]

      [13] WEI X T, SMIRNIORIS P G. Development and characterization of mesoporosity in ZSM-12 by desilication[J]. Microporous Mesoporous Mater, 2006, 97(1/3): 97-106.

    14. [14]

      [14] KADONO T, TAJIMA M, SHIOMURA T, IMAWAKA N, NODA S, KUBOTA T, OKAMOTO Y. Hydrothermal synthesis of giant single crystals of MFI type zeolite: Modified bulk material dissolution method[J]. Microporous Mesoporous Mater, 2008, 115(3): 454-460.

    15. [15]

      [15] SUZUKI T, OKUHARA T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution[J]. Microporous Mesoporous Mater, 2001, 43(1): 83-89.

    16. [16]

      [16] OGURA M, SHINOMIYA S, TATENO J, NARA Y, NOMURA M, KIKUCHI E, MATSUKATA M. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl Catal A: Gen, 2001, 219(3): 33-43.

    17. [17]

      [17] GROEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination[J]. Microporous Mesoporous Mater, 2005, 87(2): 153-161.

    18. [18]

      [18] GROEN J C, PEFFER L A A, MOULIJN J A, PÉREZ-RAMÍREZ J. Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent[J]. Chem Eur J, 2005, 11(17): 4983-4994.

    19. [19]

      [19] MEI C S, WEN P Y, LIU Z C, LIU H X, WANG Y D, YANG W M, XIE Z K, HUA W M, GAO Z. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5[J]. J Catal, 2008, 258(1): 243-249.

    20. [20]

      [20] FATHI S, SOHRABI M, FALAMAKI C. Improvement of HZSM-5 performance by alkaline treatment: Comparative catalytic study in the MTG reaction[J]. Fuel, 2014, 116(1): 529-537.

    21. [21]

      [21] GROEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Alkaline posttreatment of MFI Zeolites. From accelerated screening to scale-up[J]. Ind Eng Chem Res, 2007, 46(12): 4183-4201.

    22. [22]

      [22] GROEN J C, ABELLO S, VILLAESCUSA L A. Mesoporous beta zeolite obtained by desilication[J]. Microporous Mesoporous Mater, 2008, 114(1/3): 93-102.

    23. [23]

      [23] TAO Y S, KANOH H, ABRAMS L, KANEKO K. Mesopore-modified zeolites: Preparation, characterization, and applications[J]. Chem Rev, 2006, 106(3): 896-910.

    24. [24]

      [24] 石岗, 林秀英, 范煜, 鲍晓军. ZSM-5分子筛的脱硅改性及加氢改质性能[J]. 燃料化学学报, 2013, 41(5): 589-600. (SHI Gang, LIN Xiu-ying, FAN Yu, BAO Xiao-jun. Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading[J]. Journal of Fuel Chemistry and Technology, 2013, 41(5): 589-600.)

    25. [25]

      [25] HOLMBERG B A, WANG H T, YAN Y S. High silica zeolite Y nanocrystals by dealumination and direct synthesis[J]. Microporous Mesoporous Mater, 2004, 74(1/3): 189-198.

    26. [26]

      [26] MELIN-CABRERA I, ESPINOSA S, MENTRUIT C, KAPTEIJN F, MOULIJN J A. Alkaline leaching for synthesis of improved Fe-ZSM-5 catalysts[J]. Catal Commun, 2006, 7(2): 100-103.

    27. [27]

      [27] MELIN-CABRERA I, ESPINOSA S, GROEN J C, VAN DEN LINDEN B, KAPTEIJN F, MOULIJN J A. Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM-5 and application in N2O decomposition[J]. J Catal, 2006, 238(2): 250-259.

    28. [28]

      [28] XIAO F S, WANG L, YIN C, LIN K, DI Y, LI J, XU R, SU D S, SCHIOGL R, YOKOI T, TATSUMI T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angew Chem Int Ed, 2006, 45(19): 3090-3093.

    29. [29]

      [29] SONG Y Q, FENG Y L, LIU F, KANG C L, ZHOU X L, XU L Y, YU G X. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance[J]. J Mol Catal A: Chem, 2009, 310(1/2): 130-137.

    30. [30]

      [30] ZHAO L, XU C M, GAO S, SHEN B J. Effects of concentration on the alkali treatment of ZSM-5 zeolite: A study on dividing points[J]. J Mater Sci, 2010, 45(19): 5406-5441.

    31. [31]

      [31] SHETTI V N, KIM J, SRIVASTAVA J R, CHOI M, RYOO R. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures[J]. J Catal, 2008, 254(2): 296-303.

    32. [32]

      [32] 陆红军. FCC催化剂中B酸和L酸的作用[J]. 催化裂化, 1998, 17(2): 13-23. (LU Hong-jun. The effect of acid B and L acid in FCC catalyst[J]. Catalytic Cracking, 1998, 17(2): 13-23.)

    33. [33]

      [33] PEREZ-RAMIREZ J, CHRISTENSEN C H, EGEBLAD K, CHRISTENSEN C H, GROEN J C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chem Soc Rev, 2008, 37(11): 2530-2542.

    34. [34]

      [34] LIU J, ZHANG C X, Shen Z H, HUA W M, TANG Y, SHEN W, Yue Y H, Xu H L, Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst[J]. Catal Commun, 2009, 10(11): 1506-1509.

  • 加载中
    1. [1]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    11. [11]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    14. [14]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    15. [15]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    16. [16]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    17. [17]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    18. [18]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    19. [19]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(0)
  • Abstract views(635)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return