Citation: GENG Rui, DONG Mei, WANG Hao, NIU Xian-jun, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. An investigation on the catalytic performance of 10 MR zeolites in methanol aromatization reaction[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1119-1127. shu

An investigation on the catalytic performance of 10 MR zeolites in methanol aromatization reaction

  • Corresponding author: DONG Mei,  FAN Wei-bin, 
  • Received Date: 17 January 2014
    Available Online: 5 March 2014

    Fund Project: 国家自然科学基金(21103216,21273264,21273263) (21103216,21273264,21273263)国家重点基础研究发展规划(973计划,2011CB201403) (973计划,2011CB201403)山西省自然科学基金(2012011005-2)。 (2012011005-2)

  • Five zeolites ZSM-5, ZSM-22, EU-1, MCM-22, and ITQ-13 with 10 member ring channels were hydrothermally synthesized and their structure, acidity, morphology and catalytic behaviors in methanol aromatization reaction were compared. The results indicate that the morphology, microporous volumes, and physicochemical properties of the zeolites differ significantly from each other, and thus results in considerable influence on the catalytic activity and stability. Among the five zeolites studied, ZSM-5 shows the highest aromatic yield of 34.8%, followed by MCM-22 with the aromatic yield of 21.9%. However, unlike ZSM-5 and MCM-22, the other three catalysts are inactivitive for methanol aromatization. The introduction of Ga species into ZSM-5 and MCM-22, however, can improve the aromatic yield significantly. The aromatic yields on Ga/ZSM-5 and Ga/MCM-22 reach 40.8% and 27.1%, respectively. The TG/DTA and GC analyses of the coke compounds deposited on the deactivated catalysts suggest that the five zeolites display much differences in composition, location and distribution of coke deposition.
  • 加载中
    1. [1]

      [1] TRAVALLONI L, GOMES A C L, GASPAR A B, SILVA M A P. Methanol conversion over acid solid catalysts[J]. Catal Today, 2008, 133-135: 406-412.

    2. [2]

      [2] STÖCKER M. Methanol to hydrocarbons: Catalytic materials and their behavior[J]. Microporous Mesoporous Mater, 1999, 29(1/2): 3-48.

    3. [3]

      [3] KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol to hydrocarbon conversion process[J]. J Catal, 2010, 269(1): 219-228.

    4. [4]

      [4] CHEN J Q, BOZZANO A, GLOVER B, FUGLERUD T, KVISLE S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal Today, 2005, 106(1/4): 103-107.

    5. [5]

      [5] MOKRANI T, SCURRELL M. Gas conversion to liquid fuels and chemicals: The methanol route-catalysis and processes development[J]. Catal Rev, 2009, 51(1): 1-145.

    6. [6]

      [6] KUMAR R, RATNASWAMY P. Isomerization and formation of xylenes over ZSM-5 and ZSM-23 zeolites[J]. J Catal, 1989, 116(2): 440-448.

    7. [7]

      [7] BRISCOE N A, JOHNSON D W, SHANNON M D. The framework topology of zeolite EU-1[J]. Zeolites, 1988, 8(1): 74-76.

    8. [8]

      [8] BOXI T, PUCHE M, CAMBLOR M A. Synthetic porous crystalline material, used as catalyst and adsorbent, comprises sets of generally parallel channels defined by specific rings of tetrahedrally coordinated atoms, which intersect mutually: US, 6471941. 2002.

    9. [9]

      [9] BAERLOCHER C H, MCCUSKER L B, OLSON D H. Atlas of zeolite framework types sixth revised edition[M]. Netherlands: Elsevier Science Ltd, 2007.

    10. [10]

      [10] ROBSON H, LILLERUD K P. Verified synthesis of zeolitic materials[M]. Netherlands: Elsevier Science Ltd, 2001.

    11. [11]

      [11] 苗青, 董梅, 牛宪军, 王浩, 樊卫斌, 王建国, 秦张峰. 含镓ZSM-5 分子筛的制备及其在甲醇芳构化反应中的催化性能[J]. 燃料化学学报, 2012, 40(10): 1230-1239. (MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1230-1239.)

    12. [12]

      [12] JOLY J F, AJOT H, MERLEN E, RAATZ F, ALARIO F. Parameters affecting the dispersion of the gallium phase of gallium H-MFI aromatization catalysts[J]. Appl Catal A: Gen, 1991, 79(2): 249-263.

    13. [13]

      [13] TEKETEL S. Shape selectivity in the conversion of methanol to hydrocarbons: The catalytic performance of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1[J]. ACS Catal, 2012, 2(1): 26-37.

    14. [14]

      [14] BJØRGEN M, OLSBYE U, PETERSEN D, KOLBOE S. The methanol to hydrocarbons reaction: Insight into the reaction mechanism from 12C benzene and 13C methanol coreactions over zeolite H-beta[J]. J Catal, 2004, 221(1): 1-10.

    15. [15]

      [15] TEKETEL S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites[J]. Microporous Mesoporous Mater, 2010, 136(1/3): 33-41.

    16. [16]

      [16] BEECKMAN J W, FROMENT G F. Catalyst deactivation by active site coverage and pore blockage[J]. Ind Eng Chem Fundam, 1979, 18(3): 245-256.

    17. [17]

      [17] BEECKMAN J W, FROMENT G F. Catalyst deactivation by site coverage and pore blockage: Finite rate of growth of the carbonaceous deposit[J]. Chem Eng Sci, 1980, 35(4): 805-815.

    18. [18]

      [18] ROLLMANN L D, WALSH D E. Shape selectivity and carbon formation in zeolites[J]. J Catal, 1979, 56(1): 139-140.

    19. [19]

      [19] 刘中民, 陈国权, 王清遐, 梁娟, 蔡光宇. 分子筛催化剂的失活与积炭[J]. 催化学报, 1994, 15(4): 301-303. (LIU Zhong-min, CHEN Guo-quan, WANG Qing-xia, LIANG Juan, CAI Guang-yu. Deactivation and coke formation on zeolite catalysts[J]. Chinese Journal of Catalysis, 1994, 15(4): 301-303.)

    20. [20]

      [20] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal, 2007, 249(2): 195-207.

    21. [21]

      [21] BLEKEN F, SKISTAD W, BARBERA K, KUSTOVA M, BORDIGA S, BEATO P, LILLERUD K P, SVELLE S, OLSBYE U. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: Comparison of TNU-9, IM-5, ZSM-11 and ZSM-5[J]. Phys Chem Chem Phys, 2011, 13(7): 2539-2549.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    4. [4]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    5. [5]

      Zheng-Biao ZouTai-Zong WuChun-Lan XieYuan WangYan LiGang ZhangRong ChaoLian-Zhong LuoLi-Sheng LiXian-Wen Yangneo-Dicitrinols A–C: Unprecedented PKS-NRPS hybrid citrinin dimers with ferroptosis inhibitory activity from the deep-sea-derived Penicillium citrinum W22. Chinese Chemical Letters, 2024, 35(12): 109723-. doi: 10.1016/j.cclet.2024.109723

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    11. [11]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    13. [13]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    16. [16]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    17. [17]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    18. [18]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    19. [19]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    20. [20]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

Metrics
  • PDF Downloads(0)
  • Abstract views(963)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return