Citation: SHU Yun, ZHANG Fan, WANG Hong-chang, ZHU Jin-wei. Influence of SO2 and H2O on the selective catalytic reduction of NOx over CeO2/TiO2/cordierite catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1111-1118. shu

Influence of SO2 and H2O on the selective catalytic reduction of NOx over CeO2/TiO2/cordierite catalyst

  • Corresponding author: ZHANG Fan, 
  • Received Date: 11 April 2014
    Available Online: 13 June 2014

    Fund Project: 国家自然科学基金(2012AA062505) (2012AA062505)中央级公益性科研院所基本科研业务专项(2013-YSKY-01)。 (2013-YSKY-01)

  • A monolithic CeO2/TiO2/cordierite deNOx catalyst was prepared by an impregnation method, with cordierite as the substrate and CeO2 as the active component. The CeO2/TiO2/cordierite catalyst exhibits excellent resistance against SO2 and H2O in the selective catalytic reduction (SCR) of NOx with NH3, compared with the commercial vanadium-based catalyst (V2O5-WO3/TiO2/cordierite); the CeO2/TiO2/cordierite catalyst gives a conversion of NOx above 70% after 30 h resistance test against SO2+H2O, only declined by 5%. BET, XRD, FT-IR and TG results indicated that ammonium sulfate is formed on the surface of both CeO2/TiO2/cordierite and V2O5-WO3/TiO2/cordierite catalysts during the SCR reaction in the presence of SO2 and H2O, but on the former, the amount of ammonium sulfate deposited is much less. NH3-DRIFT results suggested that the surface Brønsted acidity is strengthened, whereas the surface Lewis acidity is weakened during the SCR reaction in the presence of SO2 and H2O. XPS results further displayed that SO2+H2O in flue gas may induce a reduction of Ce from Ce4+ to Ce3+ on CeO2/TiO2/cordierite catalyst, resulting in an increase of the chemisorbed oxygen amount, which contributes to the excellent resistance of the CeO2/TiO2/cordierite catalyst against SO2 and H2O during the SCR reaction.
  • 加载中
    1. [1]

      [1] BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998, 18(1/2): 1-36.

    2. [2]

      [2] 沈伯雄, 熊丽仙, 刘亭, 王静, 田晓娟. 纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究[J]. 燃料化学学报, 2010, 38(1): 85-90. (SHEN Bo-xiong, XIONG Li-xian, LIU Ting, WANG Jing, TIAN Xiao-juan. Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 85-90.)

    3. [3]

      [3] DUNN J P, KOPPULA P R, STENGER H G. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Appl Catal B: Environ, 1998, 19(2): 103-117.

    4. [4]

      [4] BOGER T, HEIBEL A K, SORENSEN C M. Monolithic catalysts for the chemical industry[J]. Ind Eng Chem Res, 2004, 43(16): 4602-4614.

    5. [5]

      [5] LONG R Q, YANG R T. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. J Am Chem Soc, 1999, 121(23): 5595-5596.

    6. [6]

      [6] XU W Q, YU Y B, ZHANG C B, HE H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catal Commun, 2008, 9: 1453-1457.

    7. [7]

      [7] 沈伯雄, 郭宾彬, 史展亮, 吴春飞, 梁材. CeO2/ACF的低温SCR烟气脱硝性能研究[J]. 燃料化学学报, 2007, 35(1): 125-128. (CHEN Bo-xiong, GUO Bing-bing, SHI Zhang-liang, WU Chun-fei, LIANG Cai. Selective catalytic reduction of NO over carbon nanotubes supported CeO2[J]. Journal of Fuel Chemistry and Technology, 2007, 35(1): 125-128.)

    8. [8]

      [8] ZHU Z P, LIU Z Y, NIU H X, LIU S J. Promoting effect of SO2 on activated carbon-supported vanadia catalyst for NO reduction by NH3 at low temperatures[J]. J Catal, 1999, 187(1): 245-248.

    9. [9]

      [9] LONG R Q, YANG R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts[J]. J Catal, 1999, 186(2): 254-268.

    10. [10]

      [10] HOU Y Q, HUANG Z G, GUO S J. Effect of SO2 on V2O5/ACF catalysts for NO reduction with NH3 at low temperature[J]. Catal Commun, 2009, 10(11): 1538-1541.

    11. [11]

      [11] CHEN J, YANG R T. Selective catalytic reduction of NO with NH3 on SO2-4/TiO2 super acid catalyst[J]. J Catal, 1993, 139(1): 277-288.

    12. [12]

      [12] LONG R Q, Chang M, YANG R T. Enhancement of activities by sulfation on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of NO by ammonia[J]. Appl Catal B: Environ, 2001, 33(2): 97-107.

    13. [13]

      [13] GARCÍA B E, PINILLA J L, LÁZARO M J, MOLINER R. Role of sulphates on the mechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths[J]. J Catal, 2005, 233(1): 166-175.

    14. [14]

      [14] ROY S, VISWANATH B, HEGDE M S. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M=Cr, Mn, Fe, Co, Cu)[J]. J Phys Chem C, 2008, 112(15): 6002-6112.

    15. [15]

      [15] 金瑞奔. 负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究. 杭州: 浙江大学, 2010. (JIN Rui-ben. Study on the supported Mn-Ce low temperature SCR DeNOx catalysts: Preparation, reaction mechanism and SO2 tolerance. Hangzhou: Zhejiang University, 2010.)

    16. [16]

      [16] HUANG Z, ZHU Z P, LIU Z Y. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures[J]. Appl Catal B: Environ, 2002, 39(4): 361-368.

    17. [17]

      [17] FREDERICKSON L D, HAUSEN D M. Infrared spectra-structure correlation study of vanadium-oxygen compounds[J]. Anal Chem, 1963, 35(8): 818-824.

    18. [18]

      [18] TOPSØE N Y. Mechanism of the selective catalytic reduction of nitric-oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy[J]. Science, 1994, 265(5176): 1217-1219.

    19. [19]

      [19] TAKAGI M, KAWAI T, SOMA M. Mechanism of catalytic reaction between NO and NH3 on V2O5 in the presence of oxygen[J]. J Phys Chem, 1976, 80(4): 430-437.

    20. [20]

      [20] MARBÁN G, FUERTES T. Mechanism of low temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4-role of surface NH3 species: SCR mechanism[J]. J Catal, 2004, 226(1): 138-155.

    21. [21]

      [21] HUANG J H, TONG Z Q, HUANG Y. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J]. Appl Catal B: Environ, 2008, 78(3/4): 309-314.

    22. [22]

      [22] CHEN L, LI J H, GE M F. DRIFT study on cerium-tungsten titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol, 2010, 44(24): 9590-9598.

    23. [23]

      [23] GUAN B, LIN H, ZHU L. Selective catalytic reduction of NOx with NH3 over Mn, Ce substitution Ti0.9V0.1O2-δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method[J]. J Phys Chem C, 2011, 115(26): 12850-12863.

    24. [24]

      [24] DAMYANOVA S, PEREZ C A, SCHMAL M. Characterization of ceria-coated alumina carrier[J]. Appl Catal A: Gen, 2002, 234(1/2): 271-282.

    25. [25]

      [25] LI Y, ZHANG B C, TANG X L. Hydrogen production from methane decomposition over Ni/CeO2 catalysts[J]. Catal Commun, 2006, 7(6): 380-386.

    26. [26]

      [26] LIU F D, HE H, ASAKURA K. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ, 2011, 103(3/4): 369-377.

    27. [27]

      [27] PEÑA D A, UPHADE B S, REDDY E P. Identification of surface species on titania supported manganese, chromium, and copper oxide low-temperature SCR catalysts[J]. J Phys Chem B, 2004, 108(28): 9927-9936.

    28. [28]

      [28] CENTENO M A, CARRIZOSA I, ODRIOZOLA J A. NO-NH3 co-adsorption on vanadia/titania catalysts: Determination of the reduction degree of vanadium[J]. Appl Catal B: Environ, 2001, 29(4): 307-314.

    29. [29]

      [29] WAQIF M, BAZIN P, SAUR O. Study of ceria sulfation[J]. Appl Catal B: Environ, 1997, 11(2): 193-205.

    30. [30]

      [30] PÃRVULESCU V I, BOGHOSIAN S, PÃRVULESCU V, JUNG S M, GRANGE P. Selective catalytic reduction of NO with NH3 over mesoporous V2O5-TiO2-SiO2 catalyst[J]. J Catal, 2003, 217(1): 172-185.

    31. [31]

      [31] NOLAN M. Molecular adsorption on the doped(110) ceria surface[J]. J Phys Chem C, 2009, 113(6): 2425-2432.

    32. [32]

      [32] LIETTI L. Reactivity of V2O5-WO3/TiO2 de-NOx catalysts by transient methods[J]. Appl Catal B: Environ, 1996, 10(4): 281-297.

  • 加载中
    1. [1]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(901)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return