Citation:
ZHU Bin, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Synergetic effect of Cu-Fe composite oxides supported on Al-PILC for SCR of NO with NH3[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(9): 1102-1110.
-
Cu/Al-PILC, Fe/Al-PILC and CuFe/Al-PILC were prepared by rotary evaporation-impregnation method using Al-PILC as support. Selected catalytic reduction of NO with NH3 (NH3-SCR) was carried out in a fixed bed reactor to evaluate their catalytic performance. Compared to Cu/Al-PILC and Fe/Al-PILC, CuFe/Al-PILC showed better NO removal efficiency (97%) and a wider temperature range (290~450℃) of 90% DeNO because of the strong synergetic effect of Cu-Fe composite oxides. Moreover, CuFe/Al-PILC showed good resistance to water vapor and SO2. XRD, UV-vis, XPS and N2 adsorption were used to characterize the structure of the catalysts. A new phase CuFe2O4 formed in CuFe/Al-PILC, which changed the surface properties of CuFe/Al-PILC, improved the dispersion of Cu and Fe on the Al-PILC surface and increased ABET and vp of CuFe/Al-PILC. H2-TPR confirmed the existence of CuFe2O4, which improved the re-dox property of CuFe/Al-PILC. The result of NH3-TPD implied that the surface acidity of CuFe/Al-PILC made it possible to adsorb and desorb NH3 in a wide temperature range. The concentration of reducible species on the surface of CuFe/Al-PILC increased, which resulted in high NO removal efficiency.
-
Keywords:
- SCR,
- DeNO,
- Al-PILC,
- Cu-Fe composite oxides catalyst,
- synergetic effect
-
-
-
[1]
[1] 吕效谱, 成海容, 王祖武, 张帆. 中国大范围雾霾期间大气污染特征分析[J]. 湖南科技大学学报(自然科学版), 2013, 28(3): 104-110. (LV Xiao-pu, CHENG Hai-rong, WANG Zu-wu, ZHANG Fan. Analysis of a wide range haze pollution in China[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2013, 28(3): 104-110.)
-
[2]
[2] 王英, 李令军, 刘阳. 京津冀与长三角区域大气NO2污染特征[J]. 环境科学, 2012, 33(11): 3685-3692. (WANG Ying, LI Ling-jun, LIU Yang. Characteristics of atmospheric NO2 in the Beijing-Tianjin-Hebei Region and the Yangtze River Delta analyzed by satellite and ground observations[J]. Environmental Science, 2012, 33(11): 3685-3692.)
-
[3]
[3] 郭龙, 辛志玲. 烟气脱硝技术研究进展与现状[J]. 广州化工, 2013, 14(13): 22-24. (GUO Long, XIN Zhi-ling. Research progress and status quo of flue gas denitrification technology[J]. Guangzhou Chemical Industry, 2013, 14(13): 22-24.)
-
[4]
[4] 周涛, 刘少光, 唐名早, 陈成武, 徐玉松, 吴进明. 选择性催化还原脱硝催化剂研究进展[J]. 硅酸盐学报, 2009, 37(2): 317-324. (ZHOU Tao, LIU Shao-guang, TANG Ming-zao, CHEN Cheng-wu, XU Yu-song, WU Jin-ming. Research progress on selective catalytic reduction De-NOx catalyst[J]. Journal of the Chinese Ceramic Society, 2009, 37(2): 317-324.)
-
[5]
[5] 王坤鹏, 宋崇林, 宾峰, 吕刚, 宋金瓯. Cu/ZSM-5 分子筛催化剂SCR催化性能[J]. 燃烧科学与技术, 2012, 18(1): 73-78. (WANG Kun-peng, SONG Chong-lin, BIN Feng, LV Gang, SONG Jin-ou. Performance of selective catalytic reduction over Cu/ZSM-5 zeolite catalysts[J]. Journal of Combustion Science and Technology, 2012, 18(1): 73-78.)
-
[6]
[6] ZHANG D S, ZHANG L, SHI L Y, FANG C, LI H R, GAO R H, HUANG L, ZHANG J P. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3[J]. Nanoscale, 2013, 5(3): 1127-1136.
-
[7]
[7] 周超强, 董国君, 龚凡, 常雪. 铜锰复合低温 NH3-SCR整体催化剂的制备及其性能研究[J]. 燃料化学学报, 2009, 37(5): 588-594. (ZHOU Chao-qiang, DONG Guo-jun, GONG Fan, CHANG Xue. Preparation and characterization of monolith catalysts loaded with copper and manganese for low-temperature NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 588-594.)
-
[8]
[8] SI Z C, WENG D, WU X D, JANG Y, WANG B. Modifications of CeO2-ZrO2 solid solutions by nickel and sulfate as catalysts for NO reduction with ammonia in excess O2[J]. Catal Commun, 2010, 11(13): 1045-1048.
-
[9]
[9] PINNAVAIA T J. Intercalated clay catalysts[J]. Science, 1983, 220(4595): 365-71.
-
[10]
[10] JIANG Y X, CHEN X M, MO Y F, TONG Z F. Preparation and properties of Al-PILC supported SO42-/TiO2 superacid catalyst[J]. J Mol Catal A: Chem, 2004, 213(2): 231-234.
-
[11]
[11] AHENACH J, COOL P, VANSANT E F. Acid/base treatment of Al-PILC in KCl solution[J]. Micropor Mesopor Mater, 1998, 26(1): 185-192.
-
[12]
[12] ZUO S F, ZHOU R X. Al-pillared clays supported rare earths and palladium catalysts for deep oxidation of low concentration of benzene[J]. Appl Surf Sci, 2006, 253(5): 2508-2514.
-
[13]
[13] 王庐云, 黄赵洁, 漆仲华, 黄海凤, 柴油车DOC催化剂贵金属负载工艺研究[J]. 浙江工业大学学报, 2014, 42(1): 27-30, 36. (WANG Lu-yun, HUANG Zhao-jie, QI Zhong-hua, HUANG Hai-feng. Study on loading process of precious metal for DOC catalysts[J]. Journal of Zhejiang University of Technology, 2014, 42(1): 27-30, 36.)
-
[14]
[14] 刘清雅, 刘振宇, 李成岳. NH3在选择性催化还原NO过程中的吸附与活化[J]. 催化学报, 2006, 27(7): 636-646. (LIU Qing-ya, LIU Zhen-yu, LI Cheng-yue. Adsorption and Activation of NH3 during Selective Catalytic Reduction of NO by NH3[J]. Chinese Journal of Catalysis, 2006, 27(7): 636-646.)
-
[15]
[15] DU X S, GAO X, CUI L W, ZHENG Z Z, JI P D, LUO Z Y, CEN K F. Experimental and theoretical studies on the influence of water vapor on the performance of a Ce-Cu-Ti oxide SCR catalyst[J]. Appl Surf Sci, 2013, 270(1): 370-376.
-
[16]
[16] XIE G Y, LIU Z Y, ZHU Z P, LIU Q Y, GE J, HUANG Z G. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent-Ⅱ Promotion of SCR activity by SO2 at high temperatures[J]. J Catal, 2004, 224(1): 42-49.
-
[17]
[17] GIAMELLO E, MURPHY D, MAGNACCA G, MORTERRA C, SHIOYA Y, NOMURA T, ANPO M. The interaction of NO with copper ions in ZSM-5: An EPR and IR investigation[J]. J Catal, 1992, 136(2): 510-520.
-
[18]
[18] 曹明礼, 袁继祖, 余永富, 于阳辉. 柱撑粘土的制备与表征[J]. 武汉理工大学学报, 2002, 24(5):19-25. (CAO Ming-li, YUAN Ji-zu, YU Rong-fu, YU Yang-hui. Preparation and characterization of clays pillared by polyhydroxyl-Al cations[J]. Journal of Wuhan University of Technology, 2002, 24(5):19-25.)
-
[19]
[19] 冉宏峰, 房克功, 林明桂, 孙予罕. Cu/Fe组成对CuFe基低碳醇催化剂的反应性能的影响[J]. 天然气化工(C1化学与化工), 2010, 35(4): 1-5, 11. (RAN Hong-feng, FANG Ke-gong, LIN Ming-gui, SUN Yu-han. Effect of Cu/Fe ratios on catalytic performances of coprecipitated CuFe based catalysts for higher alcohols synthesis[J]. Natural Gas Chemical Industry, 2010, 35(4): 1-5, 11.)
-
[20]
[20] CHARY K V R, SEELA K K, SAGAR G V, SREEDHAR B. Characterization and reactivity of niobia supported copper oxide catalysts[J]. J Phys Chem B, 2004, 108(2): 658-663.
-
[21]
[21] 肖波, 潘永信. 磁铁矿的低温磁学性质研究进展[J]. 地球物理学进展, 2006, 21(2): 408-415. (XIAO Bo, PAN Yong-xin. Review of the low temperature magnetic properties of magnetite[J]. Progress in Geophysics, 2006, 21(2): 408-415.)
-
[22]
[22] CORNELL R M, SCHWERTMAN U. The iron oxides: structure, properties, reactions, occurrences and uses[M]. 2nd ed. Weinheim: John Wiley & Sons, 2003.
-
[23]
[23] PARFENOW V V. NAZIPOV R A. Effect of synthesis temperature on the transport properties of copper ferrites[J]. Inorg Mater, 2002, 38(1): 78-82.
-
[24]
[24] 高岩. 选择性催化还原脱硝催化剂的实验与机理研究[D]. 济南: 山东大学, 2013. (GAO Yan. Experiment and mechanism analysis on selective catalytic reduction DeNOx catalyst[D]. Jinan, China: Shandong University, 2013.)
-
[25]
[25] AMORES J G, ESCRIBANO V S, G RAMIS, BUSCA G. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides[J]. Appl Catal B: Environ, 1997, 13(1): 45-58.
-
[26]
[26] 李哲, 贫燃条件下 Fe-Mo/ZSM-5 催化剂上氮氧化物的选择性催化还原研究[D]. 太原: 太原理工大学, 2006. (LI Zhe. Selective catalytic reduetion of nitrogen oxides under lean-burn condition over Fe-Mo/ZSM-5 catalysts[D]. Taiyuan, China: Taiyuan University of Technology, 2006.)
-
[27]
[27] 叶青, 闫立娜, 霍飞飞, 王海平, 程水源, 康天放. Cu 负载 Fe 柱撑钠化海泡石: 结构特点及其丙烯选择性催化还原NO性质研究[J]. 化学学报, 2011, 69(13): 1524-1532. (YE Qing, YAN Li-na, HUO Fei-fei, WANG Hai-ping, CHENG Shui-yuan, KANG Tian-fang. Copper impregnated Fe-pillared sodium-treated sepiolite (Fe-NaPILCS) for selective catalytic reduction of NO with C3H6[J]. Acta Chimica Sinica, 2011, 69(13): 1524-1532.)
-
[28]
[28] 张煜华, 熊海峰, 李金林. 铜对γ-Al2O3负载铁基费-托合成催化剂还原性能的影响[J]. 武汉大学学报(理学版), 2004, 50(4): 419-423. (ZHANG Yu-hua, XIONG Hai-feng, LI Jin-lin. Effects of copper on the reducibility of γ -Al2O3 supported iron Fischer-Tropsch catalysts[J]. Wuhan University Journal(Natural Science Edition), 2004, 50(4): 419-423.)
-
[29]
[29] LIETTI L, RAMIS G, BERTI F, TOLEDO G, ROBBA D, BUSCA G, FORZATTI P. Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts[J]. Catal Today, 1998, 42(1): 101-116.
-
[30]
[30] DELBECQ F, SAUTET P. Interplay between magnetism and chemisorption: a theoretical study of CO and NO adsorption on a Pd3Mn alloy surface[J]. Chem Phys Lett, 1999, 302(1): 91-97.
-
[31]
[31] 刘越, 江博琼, 吴忠标. 以MnOx/TiO2作为催化剂的低温SCR反应过程中还原剂NH3的作用[J]. 环境科学学报, 2008, 28(4):671-673. (LIU Yue, JIANG Bo-qiong, WU Zhong-biao. The role of NH3 in the low-temperature selective catalytic reduction of NO over MnOx/TiO2[J]. Acta Scientiae Circumstantiae, 2008, 28(4):671-673.)
-
[32]
[32] SUN Q, GAO Z X, CHEN H Y, SACHTER W M H. Reduction of NOx with ammonia over Fe/MFI: Reaction Mechanism Based on Isotopic Labeling[J]. J Catal, 2001, 201(1): 88-99.
-
[1]
-
-
-
[1]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[2]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[3]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[4]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
-
[5]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[6]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[7]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[8]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[9]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[10]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[11]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[12]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[13]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[14]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[15]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[16]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[17]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[18]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[19]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[20]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(832)
- HTML views(72)