Citation: YIN Li-bao, DENG Chang-ya, ZHANG Cheng, FANG Qing-yan, XU Qi-sheng, CHEN Gang. Fusion characteristics in co-combustion of coal with industrial and municipal sludge[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1068-1076. shu

Fusion characteristics in co-combustion of coal with industrial and municipal sludge

  • Corresponding author: ZHANG Cheng, 
  • Received Date: 30 April 2014
    Available Online: 5 July 2014

    Fund Project: 国家自然科学基金(51006042) (51006042)广东省省部产学研重点项目(2012B091000166) (2012B091000166)华中科技大学自主创新基金(2013QN082)。 (2013QN082)

  • The ash fusion characteristics of coal mixed with different kinds of sludge were investigated. Mineral ternary phase diagram and XRD analysis were used to identify interaction mechanism of different mineral components and transformation of ash melting characteristics during burning of coal with municipal and industrial sludge. The results show that ternary phase diagram can effectively predict the variation of ash melting temperature for co-combustion of coal and sludge. When the content of iron oxide is low, the formation of eutectic, diopside and anorthite can reduce the ash fusion temperature. Monticellite, mullite and monomer form of iron oxide improve the ash fusion temperature. The sulfur in municipal sludge easily forms low temperature eutectic of sulfate. The influence of phosphorus on the ash fusion temperature is related to the ratio of alumina and alkali. When the alumina is dominant, phosphorus will reduce the ash fusion temperature. When the alkali is primary, phosphorus will raise the ash fusion temperature.
  • 加载中
    1. [1]

      [1] 奉华, 张衍国. 城市污水污泥的热解特性[J]. 清华大学学报: 自然科学版, 2001, 41(10): 90-92. (FENG Hua, ZHANG Yan-guo. Pyrolysis properties of municipal sewage sludge[J]. Journal of Tsinghua University: Science and Technology, 2001, 41(10): 90-92.)

    2. [2]

      [2] VESILIND P A, RAMSEY T B. Effect of drying temperature on the fuel value of wastewater sludge[J]. Waste Manage Res, 1996, 14(2): 189-196.

    3. [3]

      [3] OTERO M, DIEZ C, CALVO L F, GARCA A I MORAN A. Analysis of the co-combustion of sewage sludge and coal by TG-MS[J]. Biomass Bioenergy, 2002, 22(4): 319-329.

    4. [4]

      [4] NADZIAKIEWICZ J, KOZIOL M. Co-combustion of sludge with coal[J]. Appl Energy, 2003, 75(3): 239-248.

    5. [5]

      [5] WOLSKI N, MAIER J, HEIN K. Fine particle formation from co-combustion of sewage sludge and bituminous coal[J]. Fuel Process Technol, 2004, 85(6): 673-686.

    6. [6]

      [6] FOLGUERAS M B, MARIZ D R, XIBERTA J. Sulphur retention during co-combustion of coal and sewage sludge[J]. Fuel, 2004, 83(10): 1315-1322.

    7. [7]

      [7] 李明, 李伟东, 李伟锋, 李海峰, 于遵宏. 污泥对神府煤灰熔点的影响[J]. 燃料化学学报, 2009, 37(4): 416-420. (LI Ming, LI Wei-dong, LI Wei-feng, LI Hai-feng, YU Zun-hong. Influence of sewage sludge addition on Shenfu coal ash fusion temperatures[J]. Journal of Fuel Chemistry and Technology, 2009, 37(4): 416-420.)

    8. [8]

      [8] 刘刚, 池涌, 蒋旭光, 刘炳池, 严建华, 岑可发. 电镀污泥焚烧后的灰渣分析[J]. 动力工程, 2006, 26(4): 577-579. (LIU Gang, CHI Yong, JIANG Xu-guang, LIU Bin-chi, YAN Jian-hua, CEN Ke-fa. Analysis study on residues of incinerated electroplating sludge[J]. Journal of Power Engineering, 2006, 26(4): 577-579.)

    9. [9]

      [9] CHEESEMAN C R, SOLLARS C J, MCENTEE S. Properties, microstructure and leaching of sintered sewage sludge ash[J]. Resour Conserv Recy, 2003, 40(1): 13-25.

    10. [10]

      [10] LIN K, CHIANG K, LIN D. Effect of heating temperature on the sintering characteristics of sewage sludge ash[J]. J Hazard Mater, 2006, 128(2): 175-181.

    11. [11]

      [11] KUPKA T, MANCINI M, IRMER M, WEBER R. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel[J]. Fuel, 2008, 87(12): 2824-2837.

    12. [12]

      [12] 王泉清, 曾蒲君. 煤灰熔融性的研究现状与分析[J]. 煤炭转化, 1997, 20(2): 32-37. (WANG Quan-qing, ZENG Pu-jun. Research and analysis of the fusibility of coal ash[J]. Coal Conversion, 1997, 20(2): 32-37.)

    13. [13]

      [13] 姚星一. 煤灰熔点与化学成分的关系[J]. 燃料化学学报, 1965, 6(2): 151-161. (YAO Xing-yi. The relationship between the ash melting point and chemical composition[J]. Acta Foculio-Chimica Sinca, 1965, 6(2): 151-161.)

    14. [14]

      [14] 赵永椿. 煤燃烧矿物组合演化及其与重金属相互作用机制的研究. 武汉: 华中科技大学, 2008. (ZHAO Yong-chun. Partition mechanism and interaction of minerals and trace elements during coal combustion. Wuhan: Huazhong University of Science and Technology, 2008.)

    15. [15]

      [15] ZHANG Q, LIU H, LI W. The influence of phosphorus on ash fusion temperature of sludge and coal[J]. Fuel Process Technol, 2013, 110: 218-226.

    16. [16]

      [16] BRYERS R W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels[J]. Prog Energy Combust Sci, 1996, 22(1): 29-120.

    17. [17]

      [17] QUEROL X, FERNANDEZ-TURIEL J L, LOPEZ S A. The behaviour of mineral matter during combustion of Spanish subbituminous and brown coals[J]. Mineral Mag, 1994, 58(1): 119-133.

    18. [18]

      [18] DWECK J, MORAIS L C, FONSECA M V. CAMPOS V, BCHLER P M. Calcined sludge sintering evaluation by heating microscopy thermal analysis[J]. J Thermal Anal Calorim, 2009, 95(3): 985-989.

    19. [19]

      [19] WU X, ZHOU T, CHEN Y, ZHANG Z, PIAO G, KOBAYASHI N, MORI S, ITAYA Y. Mineral melting behavior of chinese blended coal ash under gasification condition[J]. Asia-Pac J Chem Eng, 2011, 6(2): 220-230.

    20. [20]

      [20] FOLGRERAS M B, DIAZ R M, XIBERTA J, GARCIA M P, PIS J J. Influence of sewage sludge addition on coal ash fusion temperatures[J]. Energy Fuels, 2005, 19(6): 2562-2570.

  • 加载中
    1. [1]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    2. [2]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    3. [3]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    4. [4]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    6. [6]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    7. [7]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    8. [8]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    9. [9]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    12. [12]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    13. [13]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    17. [17]

      Linfeng Zhou Yulin Zhang Suhao Lin Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    20. [20]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

Metrics
  • PDF Downloads(0)
  • Abstract views(787)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return