Citation: CHEN Qun, PANG Ren-zhong, CHEN Xi, YANG Rui-ming, ZHUO Yu-qun, CHEN Chang-he. Determination of specific heat capacity of biomass char during pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1040-1046. shu

Determination of specific heat capacity of biomass char during pyrolysis

  • Corresponding author: CHEN Qun, 
  • Received Date: 29 March 2014
    Available Online: 11 June 2014

    Fund Project: 国家自然科学基金(51276099) (51276099)清华大学自主科研计划(2011Z02147)。 (2011Z02147)

  • The specific heat capacities of chars during primary pyrolysis of biomass with different conversion and the heat capacities of virgin biomass were determined. The ratio method was employed to measure the specific heat capacities of two biomass samples and their pyrolyzed chars through thermogravimetry and differential scanning calorimetry (TG-DSC). A mathematical model was developed to calculate values of specific heat of chars. The results show that the specific heat capacities of the two biomass samples and their derived chars increase linearly within 60~200℃. The values of the specific heat capacity of the chars are lower than those of the virgin biomass samples. The specific heat of chars decreases as the extent of pyrolysis increases. The calculated specific heat capacities from the developed mathematical model are quite close to those measured by TG-DSC analyses between 150~200℃.
  • 加载中
    1. [1]

      [1] 徐俊明, 戴伟娣, 许玉, 蒋剑春. 生物质快速热解技术及产物提质改性研究进展[J]. 生物质化学工程, 2011, 45(6): 44-48. (XU Jun-ming, DAI Wei-di, XU Yu, JIANG Jian-chun. Research progress on biomass pyrolysis and its upgrading process[J]. Biomass Chemical Engineering, 2011, 45(6): 44-48.)

    2. [2]

      [2] 李凯, 郑燕, 龙潭, 朱锡锋. 利用Py-GC/MS研究温度和时间对生物质热解的影响[J]. 燃料化学学报, 2013, 41(7): 845-849. (LI Kai, ZHENG Yan, LONG Tan, ZHU Xi-feng. Study on effect of temperature and time on biomass pyrolysis by Py-GC/MS[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7): 845-849.)

    3. [3]

      [3] 王树荣, 廖艳芬, 谭洪, 骆仲泱, 岑可法. 纤维素快速热裂解机理试验研究-Ⅱ. 机理分析[J]. 燃料化学学报, 2003, 31(4): 317-321. (WANG Shu-rong, LIAO Yan-fen, TAN Hong, LUO Zhong-yang, CEN Ke-fa. Mechanism of cellulose rapid pyrolysis-Ⅱ. Mechanism analysis[J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 317-321.)

    4. [4]

      [4] 胡强, 陈应泉, 杨海平, 郝宏蒙, 王贤华, 陈汉平. 温度对烟杆热解炭、气、油联产特性的影响[J]. 中国电机工程学报, 2013, 33(26): 54-59. (HU Qiang, CHEN Ying-quan, YANG Hai-ping, HAO Hong-meng, WANG Xian-hua, CHEN Han-ping. Influence of temperature on the characteristics of char, gas and bio-oil from tobacco stalk's pyrolyticpolygeneration[J]. Proceedings of the CSEE, 2013, 33(26): 54-59.)

    5. [5]

      [5] THUNMAN H, NIKLASSON F, JOHNSSON F, LECKNER B. Composition of volatile gases and thermochemical properties of wood for modelling of fixed or fluidized beds[J]. Energy Fuel, 2001, 15(6): 1488-1497.

    6. [6]

      [6] RAGLAND K W, AERTS D J, BAKER A J. Properties of wood for combustion analysis[J]. Bioresource Technol, 1991, 37(2): 161-168.

    7. [7]

      [7] COMESANA J A, NIESTROJ M, GRANADA E, SZLEK A. TG-DSC analysis of biomass heat capacity during pyrolysis process[J]. J Energy Inst, 2013, 86(3): 153-159.

    8. [8]

      [8] BLOKHIN A V, VOITKEVICH O V, KABO G J, PAULECHKA Y U, SHISHONOK M V, KABO A G. Thermodynamic properties of plant biomass components. Heat capacity, combustion energy, and gasification equilibria of cellulose[J]. J Chem Eng Data, 2011, 56(9): 3523-3531.

    9. [9]

      [9] HARADA T, HATA T, ISHIHARA S. Thermal constants of wood during the heating process measured with the laser flash method[J]. J Wood Sci, 1998, 44(6): 425-431.

    10. [10]

      [10] WANG S, JIANG X M, WANG Q, JI H S, WU L F, WANG J F, XU S N. Research of specific heat capacities of three large seaweed biomass[J]. J Therm Anal Calorim, 2014, 115(3): 2071-2077.

    11. [11]

      [11] 郭兵海, 牛智有. 基于DSC的水稻秸秆比热容分析与曲线拟合[J]. 华中农业大学学报, 2014, 33(1): 122-126. (GUO Bing-hai, NIU Zhi-you. Specific heat capacity analysis and curve fitting of biomass straw based on the DSC[J]. Journal of Huazhong Agricultural University, 2014, 33(1): 122-126.)

    12. [12]

      [12] 陈珣, 傅培舫, 周怀春. 煤焦比热容的模型与DSC实验研究[J]. 工程热物理学报, 2010, 31(1): 169-172. (CHEN Xun, FU Pei-fang, ZHOU Huai-chun. Experimental study of specific heat models of coal-chars by applying DSC[J]. Journal of Engineering Thermophysics, 2010, 31(1): 169-172.)

    13. [13]

      [13] CHASE M W J R, DAVIES C A, DOWNEY J R, FRURIP D J R, MCDONALD R A, SYVERUD A N. JANAF thermochemical tables[J]. J Phys Chem Ref Data, 1985, 14(1): 156.

    14. [14]

      [14] YANG H, YAN R, CHEN H, ZHENG C, LEE D H, LIANG D T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin[J]. Energy Fuel, 2006, 20: 388-393.

    15. [15]

      [15] BASU P. Biomass gasification and pyrolysis: Practical design and theory[M]. Elsevier, 2010.

    16. [16]

      [16] ANTAL M J. Biomass pyrolysis: A review of the literature. Part I-Carbohydrate pyrolysis[J]. Adv So Energy, 1983, 11: 62-111.

    17. [17]

      [17] GRONLI M G, VARHEGYI G, BLASI C D. Thermogravimetric analysis and devolatilization kinetics of wood[J]. Ind Eng Chem Res, 2002, 41(17): 4201-4208.

    18. [18]

      [18] RAGLAND K W, AERTS D J. Properties of wood for combustion analysis[J]. Bioresource Technol, 1991, 37(2): 161-168.

    19. [19]

      [19] RATH J, WOLFINGER M G, STEINER G, KRAMMER G, BARONTINI F, COZZANI V. Heat of wood pyrolysis[J]. Fuel, 2003, 82(1): 81-91.

    20. [20]

      [20] AGARWAL G, LATTIMER B. Method for measuring the standard heat of decomposition of materials[J]. Thermochim Acta, 2012, 545: 34-47.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    5. [5]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    6. [6]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    7. [7]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    8. [8]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    9. [9]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    13. [13]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    16. [16]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    17. [17]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    20. [20]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

Metrics
  • PDF Downloads(0)
  • Abstract views(772)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return