Citation: GAO Shuang, TANG Shi-yun, HU Sheng-wang, ZHU Quan, ZHANG Qi-yi, WANG Jian-li, LI Xiang-yuan. The anti-coking effect of TiN and TiC coatings during pyrolysis of hydrocarbon fuel[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(8): 1017-1024. shu

The anti-coking effect of TiN and TiC coatings during pyrolysis of hydrocarbon fuel

  • Corresponding author: ZHU Quan,  LI Xiang-yuan, 
  • Received Date: 16 April 2014
    Available Online: 21 May 2014

    Fund Project: 国家自然科学基金(91016002) (91016002)四川省科技支撑计划(2012GZ0006) (2012GZ0006)四川大学优秀青年学者科研基金(2013SCU04A05)。 (2013SCU04A05)

  • In order to inhibit the metal catalytic coking, the TiN and TiC coatings were made on the inner surface of stainless steel 304 tubes by chemical vapor deposition (CVD) method. The coatings were characterized by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), metalloscopy and thermal shock. The results show that the thickness of TiN and TiC coatings is about 7.24 μm and 11.52 μm, respectively. And the two kinds of coatings are uniform and dense, which have a good adhesive strength. To evaluate the anti-coking effect of TiN and TiC coatings, the supercritical cracking of hydrocarbon fuel (A) was employed in the temperature programmed mode and the experiment was terminated when the pressure drop of reaction tube is more than 1 MPa. The results show that the experiment with the 304 blank tube is terminated in 180 s at the reaction temperature of 650 ℃, while the experiments with the TiN and TiC coated tubes are terminated in 275 s and 1 560 s only at 780 ℃, respectively. At the same time, the anti-coking effect of the coatings is evaluated by analyzing the pressure drop, gas composition and morphology of coke. It is indicated that the two kinds of coatings could inhibit coking effectively, and TiN is better than TiC.
  • 加载中
    1. [1]

      [1] EDWARDS T. Recent research results in advanced fuels[J]. Prepr-Am Chem Soc, Div Pet Chem, 1996, 41(2): 481-487.

    2. [2]

      [2] 张波, 王彬成, 林瑞森. 吸热型碳氢燃料的热裂化及催化裂化[J]. 石油加工, 2002, 18(4): 85-89. (ZHANG Bo, WANG Bin-cheng, LIN Rui-sen. Thermal cracking and catalytic cracking of endothermic hydrocarbon fuel[J]. Acta Petrolei Sinica: Petroleum Processing Section, 2002, 18(4): 85-89.)

    3. [3]

      [3] CHEN F F, TAM W F, SHIMP N R, NORRIS R B. An innovative thermal management system for a Mach 4 to Mach 8 hypersonic scramjet engine[J]. AIAA paper, 1998, 3734: 1998.

    4. [4]

      [4] PETLEY D H, JONES S C. Thermal management for a mach 5 cruise aircraft using endothermic fuel[J]. J Aircraft, 1992, 29(3): 384-389.

    5. [5]

      [5] EDWARDS T. Liquid fuel and propellants for aerospace propulsion: 1903-2003[J]. J Propul Power, 2003, 19(6): 1089-1107.

    6. [6]

      [6] EDWARDS T. Cracking and deposition behavior of supercritical hydrocarbon aviation fuels[J]. Combust Sci Technol, 2006, 178(1/3): 307-334.

    7. [7]

      [7] ESER S. Mesophase and pyrolytic carbon formation in aircraft fuel lines[J]. Carbon, 1996, 34(4): 539-547.

    8. [8]

      [8] 范启明, 米镇涛, 于燕, 张香文. 高超音速推进用吸热型烃类燃料的热稳定性研究 Ⅱ. 添加剂的合成与评价[J]. 燃料化学学报, 2002, 30(2): 167-170. (FAN Qi-ming, MI Zhen-tao, YU Yan, ZHANG Xiang-wen. Study on thermal stability of endothermic hydrocarbon fuels for hypersonic propulsion Ⅱ. Autoxidation mechanism and additives evaluation[J]. Journal of Fuel Chemistry and Technology, 2002, 30(2): 167-170.)

    9. [9]

      [9] 朱玉红, 米镇涛, 张香文. 航空燃料高温裂解条件下热稳定添加剂的研究进展[J]. 化工进展, 2006, 25(6): 595-599. (ZHU Yu-hong, MI Zhen-tao, ZHANG Xiang-wen. Recent progress of thermal stabilizers in pyrolysis of jet fuel at elevated temperature[J]. Chemical Industry and Engineering Progress, 2006, 25(6): 595-599.)

    10. [10]

      [10] 周建新, 徐宏, 马秋林, 王志远, 李伟. SiO2/S 涂层抑制结焦性能的中试对比研究[J]. 石油学报 (石油加工), 2009, 25(5): 678-684. (ZHOU Jian-xin, XU Hong, MA Qiu-lin, WANG Zhi-yuan, LI Wei. A comparative study on inhibiting coking properties of SiO2/S coating in pilot plant setup[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2009, 25(5): 678-684.)

    11. [11]

      [11] 栾小建, 徐宏, 王志远, 周建新. SiO2/S涂层和硫磷抑制剂的抑制结焦性能研究[J]. 石油炼制与化工, 2011, 42(5): 75-80. (LUAN Xiao-jian, XU Hong, WANG Zhi-yuan, ZHOU Jian-xin. Research on the coking inhibition performance of SiO2/S coating and sulfur/phosphorus containing coking inhibitor[J]. Petroleum Processing and Petrochemicals, 2011, 42(5): 75-80.)

    12. [12]

      [12] ZHOU J X, XU H, LUAN X J, LING X. Influence of the SiO2/S coating and sulfur/phosphorus-containing coking inhibitor on coke formation during thermal cracking of light naphtha[J]. Fuel Process Technol, 2012, 104: 198-203.

    13. [13]

      [13] YANG C H, LIU G Z, WANG X Q, JIANG R P, WANG L, ZHANG X W. Preparation and anticoking performance of MOCVD alumina coatings for thermal cracking of hydrocarbon fuels under supercritical conditions[J]. Ind Eng Chem Res, 2012, 51(3): 1256-1263.

    14. [14]

      [14] MOHAN A R, ESER S. Effectiveness of low-pressure metal-organic chemical vapor deposition coatings on metal surfaces for the mitigation of fouling from heated jet fuel[J]. Ind Eng Chem Res, 2011, 50(12): 7290-7304.

    15. [15]

      [15] TANG S Y, GAO S, HU S W, WANG J L, ZHU Q, CHEN Y Q, LI X Y. Inhibition effect of APCVD titanium nitride coating on coke growth during n-hexane thermal cracking under supercritical conditions[J]. Ind Eng Chem Res, 2014, 53(13): 5432-5442.

    16. [16]

      [16] KUO D H, HUANG K W. Kinetics and microstructure of TiN coatings by CVD[J]. Surf Coat Tech, 2001, 135(2): 150-157.

    17. [17]

      [17] 郭永胜, 何龙, 蒋武, 林瑞森. 吸热型碳氢燃料裂解催化剂结焦研究[J]. 燃料化学学报, 2002, 30(6): 514-518. (GUO Yong-sheng, HE Long, JIANG Wu, LIN Rui-sen. Study of coke on zeolites for endothermic fuel catalytic cracking[J]. Journal of Fuel Chemistry and Technology, 2002, 30(6): 514-518.)

    18. [18]

      [18] BAKER R T K. Catalytic growth of carbon filaments[J]. Carbon, 1989, 27(3): 315-323.

    19. [19]

      [19] SNOECK J W, FROMENT G F, FOWLES M. Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth[J]. J Catal, 1997, 169(1): 240-249.

  • 加载中
    1. [1]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Zhonghong Yan Chunxia Li Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Jian He Dinglin Zhang Liping Wu Ying Bao Xiaochao Yang . 知识网络构建策略在有机化学教学中的应用及效果分析. University Chemistry, 2025, 40(8): 66-71. doi: 10.12461/PKU.DXHX202410092

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    13. [13]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    14. [14]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    17. [17]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    18. [18]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    19. [19]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(0)
  • Abstract views(437)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return