Citation: WANG Yong-li, WU Bao-shan, HUO Chun-fang, TAO Zhi-chao, LI Yong-wang. A theoretical study on the adsorption of C2~6 olefins on the H-ZSM-5 zeolite of periodic model[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(8): 1001-1009. shu

A theoretical study on the adsorption of C2~6 olefins on the H-ZSM-5 zeolite of periodic model

  • Corresponding author: WU Bao-shan, 
  • Received Date: 4 April 2014
    Available Online: 13 June 2014

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201401) (973计划,2011CB201401)中国科学院知识创新工程项目(KJCX2-YW-N41)。 (KJCX2-YW-N41)

  • The adsorption behaviors of linear C2~6 olefins and butene isomers on the H-ZSM-5 zeolite of periodic model were studied by the PBE-D method. The adsorption energies (EPBE-D) and the dispersive correction energies (ED) of C2~6 linear olefins on the zeolite exhibit a linear increase with the number of carbons by -12 kJ/mol and -13 kJ/mol, respectively. The adsorption energies without dispersive correction (E*) is not changed obviously, but it is decreased in the cases of increased space resistance for pentene and hexane. The value of ED is much larger than that of E*, implying that van der Waals' force plays a key role in the adsorption of olefins on the zeolite and its influence on the adsorption is dependent on the carbon number. The adsorption energies of butene isomers decrease in the order of trans-2-butane > cis-2-butene > n-butene > isobutene. Three kinds of n-butene isomers are similar in their ED value, which are larger than that of n-butene. The difference in adsorption energy among the three isomers is caused by E*. The differential charge density analysis shows that the electrons between the alkene double bond and the acidic center are gathered, in consistent with the strength of π-coordination; H atom in the acid site turns to be protonated, with electrons transferred to the nearby O and other atoms.
  • 加载中
    1. [1]

      [1] NAKHAEI POUR A, SHAHRI S M K, BOZORGZADEH H R, ZAMANI Y, TAVASOLI A, MARVAST M A. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2008, 348(2): 201-208.

    2. [2]

      [2] DRY M E. The Fischer-Tropsch synthesis[J]. Catal Sci Technol, 1981, 1: 159-255.

    3. [3]

      [3] KONNOV S V, IVANONA I I, PONOMAREVA O A, ZAIKOVSKⅡ V I. Hydroisomerization of n-alkanes over Pt-modified micro/mesoporous materials obtained by mordenite recrystallization[J]. Microporous Mesoporous Mater, 2012, 164: 222-231.

    4. [4]

      [4] GRAU J M, PARERA J M. Single and composite bifunctional catalysts of H-MOR or SO2-4-ZrO2 for N-octane hydroisomerization-cracking-influence of the porosity of the acid component[J]. Appl Catal A: Gen, 1997, 162(1/2): 17-27.

    5. [5]

      [5] 黄卫国, 李大东, 石亚华, 康小洪, 孟宪波, 王奎, 董维正, 聂红, 李灿. 分子筛催化剂上正十六烷的临氢异构化反应[J]. 催化学报, 2003, 24(9): 651-657. (HUANG Wei-guo, LI Da-Dong, SHI Ya-hua, KANG Xiao-hong, MENG Xian-bo, WANG Kui, DONG Wei-zheng, NIE Hong, LI can. Hydroisomerization of n-hexadecane on zeolite catalysts[J]. Chinese Journal of Catalysis, 2003, 24(9): 651-657.)

    6. [6]

      [6] LUGSTEIN A, JENTYS A, VINEK H. Hydroconversion of n-heptane over bifunctional HZSM-5 zeolites influence of the metal concentration and distribution on the activity and selectivity[J]. Appl Catal A: Gen, 1998, 166(1): 29-38.

    7. [7]

      [7] DENAYER J F, BARON G V, VANBUTSELE G, GINA V, PIERRE A J, JOHAN A M. Modeling of adsorption and bifunctional conversion of n-alkanes on Pt/H-ZSM-22 zeolite catalyst[J]. Chem Eng Sci, 1999, 54(15): 3553-3561.

    8. [8]

      [8] CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. J Catal, 2000, 190(1): 39-48.

    9. [9]

      [9] MERIAUDEAU P, TUAN V A, SAPALY G, NGHIEM V T, NACCACHE C. Pore size and crystal size effects on the selective hydroisomerisation of C8 paraffins over Pt-Pd/SAPO-11, Pt-Pd/SAPO-41 bifunctional catalysts[J]. Catal today, 1999, 49(1): 285-292.

    10. [10]

      [10] WEBSTER C E, COTTONE A, DRAGO R S. Multiple equilibrium analysis description of adsorption on Na-mordenite and H-mordenite[J]. J Am Chem Soc, 1999, 121(51): 12127-12139.

    11. [11]

      [11] MAESEN T L M, BEERDSEN E, CALERO S, DUBBELDAM D, SMIT B. Understanding cage effects in the n-alkane conversion on zeolites[J]. J Catal, 2006, 237(2): 278-290.

    12. [12]

      [12] MÖLLER A, PESSOA GUIMARAES A, GLÄSER R, STAUDT R. Uptake-curves for the determination of diffusion coefficients and sorption equilibria for n-alkanes on zeolites[J]. Microporous Mesoporous Mater, 2009, 125(1): 23-29.

    13. [13]

      [13] YODA E, KONDO J N, DOMEN K. Detailed process of adsorption of alkanes and alkenes on zeolites[J]. J Phys Chem B, 2005, 109(4): 1464-1472.

    14. [14]

      [14] GEE J C, PRAMPIN D S. A kinetic and mechanistic study of the double bond and skeletal isomerization of 1-tetradecene on SAPO-11[J]. Appl Catal A: Gen, 2009, 360(1): 71-80.

    15. [15]

      [15] SPOTO G, BORDIGA S, RICCHIARDI G, SCARANO D, ZECCHINA A, BORELLO E. IR study of ethene and propene oligomerization on H-ZSM-5: Hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers[J]. J Chem Soc, Faraday Trans, 1994, 90(18): 2827-2835.

    16. [16]

      [16] FROESE R D J, MOROKUMA K. Accurate calculations of bond-breaking energies in C60 using the three-layered ONIOM method[J]. Chem Phys Lett, 1999, 305(5): 419-424.

    17. [17]

      [17] VREVEN T, MOROKUMA K. The accurate calculation and prediction of the bond dissociation energies in a series of hydrocarbons using the IMOMO (integrated molecular orbital+ molecular orbital) methods[J]. Chem Phys, 1999, 111(19): 8799-8803.

    18. [18]

      [18] VREVEN T, MOROKUMA K. Prediction of the dissociation energy of hexaphenylethane using the ONIOM (MO: MO: MO) method[J]. J Phys Chem A, 2002, 106(25): 6167-6170.

    19. [19]

      [19] NIEMINEN V, SIERKA M, MURZIN D Y, SAUER J. Stabilities of C3-C5 alkoxide species inside H-FER zeolite: A hybrid QM/MM study[J]. J Catal, 2005, 231(2): 393-404.

    20. [20]

      [20] BANACH E, KOZYRA P, REJMAK P, BROCLAWIK E, DATKA J. Cobalt cationic sites in ferrierites: QM/MM modeling[J]. Catal Today, 2008, 137(2): 493-497.

    21. [21]

      [21] MAIHOM T, BOEKFA B, SIRIJARAENSRE J, NANOK T, PROBST M, LIMTRAKUL J. Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over H-ZSM-5: An ONIOM study[J]. J Phys Chem C, 2009, 113(16): 6654-6662.

    22. [22]

      [22] 李会英, 蒲敏, 陈标华. DFT 法研究分子筛催化 trans-2-丁烯的双键异构[J]. 物理化学学报, 2005, 21(8): 898-902. (Li Hui-ying, PU Min, CHEN Biao-Hua. DFT Study on Double-bond Isomerization of trans-2-butene catalyzed by zeolites[J]. Acta Physico-Chimica Sinica, 2005, 21(8): 898-902.)

    23. [23]

      [23] 郭玉华, 蒲敏, 陈标华. C2-C5 直链烯烃在 HY 和 H-ZSM-5 分子筛上的吸附[J]. 物理化学学报, 2010, 26(9): 2503-2509. (GUO Yu-Hua, PU Min, CHEN Biao-Hua. Adsorption of linear C2-C5 olefins on HY and H-ZSM-5 zeolites[J]. Acta Physico-Chimica Sinica, 2010, 26(9): 2503-2509.)

    24. [24]

      [24] 韩冰, 褚月英, 郑安民, 邓风. 分子筛限域孔道中吡啶的吸附结构和能量[J]. 物理化学学报, 2012, 28(2): 315-323. (HAN Bing, CHU Yue-ying, ZHENG An-min, DENG Feng. Adsorption structure and energy of pyridine confined inside zeolite pores[J]. Acta Physico-Chimica Sinica, 2012, 28(2): 315-323.)

    25. [25]

      [25] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15): 1787-1799.

    26. [26]

      [26] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186.

    27. [27]

      [27] BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953-17979.

    28. [28]

      [28] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758-1775.

    29. [29]

      [29] PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations[J]. J Chem Phys, 1996, 105(22): 9982-9985.

    30. [30]

      [30] 徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. (XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Chemistry of molecular sieves and porous materials[M]. Beijing: Science Press, 2004.)

    31. [31]

      [31] VAN KONINGSVELD H, VAN BEKKUM H, JANSEN J C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy[J]. Acta Crystallogr, Sect B: Struct Sci, 1987, 43(2): 127-132.

    32. [32]

      [32] PARRILLO D J, GORTE R J, FARNETH W E. A calorimetric study of simple bases in H-ZSM-5: A comparison with gas-phase and solution-phase acidities[J]. J Am Chem Soc, 1993, 115(26): 12441-12445.

    33. [33]

      [33] LEE C, PARRILLO D J, GORTE R J, W E FARNETH. Relationship between differential heats of adsorption and brnsted acid strengths of acidic zeolites: H-ZSM-5 and H-mordenite[J]. J Am Chem Soc, 1996, 118(13): 3262-3268.

    34. [34]

      [34] DUNNE J A, MARIWALA R, RAO M, SIRCAR S, GORTE R J, MYERS A L. Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite[J]. Langmuir, 1996, 12(24): 5888-5895.

    35. [35]

      [35] HUFTON J R, DANNER R P. Chromatographic study of alkanes in silicalite: Equilibrium properties[J]. AIChE J, 1993, 39(6): 954-961.

    36. [36]

      [36] THAMM H, STACH H, FIEBIG W. Calorimetric study of the absorption of n-butane and but-l-ene on a highly dealuminated Y-type zeolite and on silicalite[J]. Zeolites, 1983, 3(2): 95-97.

    37. [37]

      [37] DUBININ M M, RAKHMATKARIEV G U, ISIRIKYAN A A. Heats of adsorption of CO2 on high-silicon zeolites ZSM-5 and silicalite[J]. Russ Chem Bull, 1989, 38(11): 2421-2423.

    38. [38]

      [38] STACH H, LOHSE U, THAMM H, SCHIRMER W. Adsorption equilibria of hydrocarbons on highly dealuminated zeolites[J]. Zeolites, 1986, 6(2): 74-90.

    39. [39]

      [39] KONDO J N, DOMEN K. IR observation of adsorption and reactions of olefins on H-form zeolites[J]. J Mol Catal A: Chem, 2003, 199(1): 27-38.

    40. [40]

      [40] KONDO J N, DOMEN K, WAKABAYASHI F. Double bond migration of 1-butene without protonated intermediate on D-ZSM-5[J]. Microporous Mesoporous Mater, 1998, 21(4): 429-437.

  • 加载中
    1. [1]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    8. [8]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    9. [9]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    10. [10]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    11. [11]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    12. [12]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    13. [13]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    16. [16]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

Metrics
  • PDF Downloads(0)
  • Abstract views(469)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return