Citation:
WANG Bo, WANG Hui, LIU Guang-bo, LI Zhuo, LI Xue-min, WU Jin-hu. Catalytic conversion of dimethyl ether to toluene over the molecular sieves modified with tungsten oxide[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(8): 994-1000.
-
The catalytic performance of various zeolites modified with tungsten oxide in the conversion of dimethyl ether (DME) to toluene in the presence of oxygen was investigated in a continuous flow fixed-bed reactor. The results indicated that WO3/HZSM-5 as a catalyst is highly selective in the conversion of DME to toluene; under the optimized conditions, i.e. atmospheric pressure, 290 ℃, and with a DME/O2 mol ratio of 2:1, the conversion of DME is 98.97%, with the selectivity of 39.71% to toluene. The characterization results about the catalyst structure and acidity illustrate that the porous structure of ZSM-5 is suitable for the formation of toluene from DME. The doping of WO3 adjusts the distribution of the surface acid sites and then inhibits the formation of side-products in the presence of oxygen, which is able to enhance the selectivity to toluene.
-
Keywords:
- dimethyl ether,
- catalytic conversion,
- toluene,
- WO3/HZSM-5
-
-
-
[1]
[1] NI Y, SUN A, WU X, HAI G, HU J, LI T, LI G. The preparation of nano-sized H[Zn.Al] ZSM-5 zeolite and its application in the aromatization of methanol[J]. Microporous Mesoporous Mater, 2011, 143(2): 435-442.
-
[2]
[2] XIA J, MAO D, ZHANG B, CHEN Q, TANG Y. One-step synthesis of dimethyl ether from syngas with Fe-modified zeolite ZSM-5 as dehydration catalyst[J]. Catal Lett, 2004, 98(4): 235-240.
-
[3]
[3] BORONAT M, MART NEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. PCCP, 2011, 13(7): 2603-2612.
-
[4]
[4] LIU J, XUE H, HUANG X, LI Y, SHEN W. Dimethyl ether carbonylation to methyl acetate over HZSM-35[J]. Catal Lett, 2010, 139(1/2): 33-37.
-
[5]
[5] LUZGIN M V, KAZANTSEV M S, VOLKOVA G G, STEPANOV A G. Solid-state NMR study of the kinetics and mechanism of dimethyl ether carbonylation on cesium salt of 12-tungstophosphoric acid modified with Ag, Pt, and Rh[J]. J Catal, 2013, 308: 250-257.
-
[6]
[6] LIU H, IGLESIA E. Selective oxidation of dimethylether to formaldehyde on small molybdenum oxide domains[J]. J Catal, 2002, 208(1): 1-5.
-
[7]
[7] LIU G, ZHANG Q, HAN Y, TAN Y. Direct oxidation of dimethyl ether to ethanol over WO3/HZSM-5 catalysts[J]. Catal Commun, 2012, 26: 173-177.
-
[8]
[8] SAN X, ZHANG Y, SHEN W, TSUBAKI N. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy Fuels, 2009, 23(5): 2843-2844.
-
[9]
[9] LIU G, ZHANG Q, HAN Y, TSUBAKI N, TAN Y. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem, 2013, 15(6): 1501-1504.
-
[10]
[10] 刘广波, 张清德, 韩怡卓, 椿范立, 谭猗生. MoO3-SnO2催化剂上二甲醚低温氧化高选择性制备甲酸甲酯[J]. 燃料化学学报, 2013, 41(2): 223-227. (LIU Guang-bo, ZHANG Qing-de, HAN Yi-zhuo, TSUBAKI Noritatsu, TAN Yi-sheng. Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2): 223-227.)
-
[11]
[11] LIU H, IGLESIA E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 keggin structures[J]. J Phys Chem, 2003, 107(39): 10840-10847.
-
[12]
[12] ZHANG Q, TAN Y, YANG C, HAN Y. MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethy ether to dimethoxymethane[J]. J Mol Catal A: Chem, 2007, 263(1): 149-155.
-
[13]
[13] ZHANG Q, TAN Y, YANG C, HAN Y. Research on catalytic oxidation of dimethyl ether to dimethoxymethane over MnCl2 modified heteropolyacid catalysts[J]. Catal Commun, 2008, 9(9): 1916-1919.
-
[14]
[14] YAGITA H, ASAMI K, MURAMATSU A, FUJIMOTO K. Oxidative dimerization of dimethyl ether with solid catalysts[J]. Appl Catal, 1989, 53(1): L5-L9.
-
[15]
[15] 苗青, 董梅, 牛宪军, 王浩, 樊卫斌, 王建国, 秦张峰. 含镓ZSM-5分子筛的制备及其在甲醇芳构化反应中的催化性能[J]. 燃料化学学报, 2012, 40(10): 1230-1239. (MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1230-1239.)
-
[16]
[16] OLSBYE U, SVELLE S, BJ RGEN M, BEATO P, JANSSENS T V, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51(24): 5810-5831.
-
[17]
[17] 向杰, 余林, 吕逵弟, 孙明, 郝志峰, 余倩, 徐洁瑜, 王雪涛. 二甲醚催化氧化制下游化学品HZSM-5催化氧化制碳氢化合物[J]. 化工学报, 2007, 58(4): 887-891. (XIANG Jie, YU Lin, LV Kui-di, SUN Ming, HAO Zhi-feng, YU Qian, XU Jie-yu, WANG Xue-tao. Catalytic oxidation of dimethyl ether to downstream products[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(4): 887-891.)
-
[18]
[18] ZENG J, X Z, ZHANG H, LIN G, TSAI K R. Nonoxidative dehydrogenation and aromatization of methane over W/HZSM-5-based catalysts[J]. Catal Lett, 1998, 53(1): 119-124.
-
[19]
[19] XIONG Z, ZHANG H, LIN G, ZENG J. Study of W/HZSM-5-based catalysts for dehydro aromatization of CH4 in absence of O2[J]. Catal Lett, 2001, 74(3/4): 223-239.
-
[20]
[20] YANG J, DENG F, ZHANG M, LUO Q, YE C. W/HZSM-5 catalyst for methane dehydro-aromatization: A multinuclear MAS NMR study[J]. J Mol Catal A: Chem, 2003, 202(1/2): 239-246.
-
[21]
[21] DI Z, YANG C, JIAO X, LI J, WU J, ZHANG D. A ZSM-5/MCM-48 based catalyst for methanol to gasoline conversion[J]. Fuel, 2013, 104: 878-881.
-
[22]
[22] FRANCISCO J S. On the competition between hydrogen abstraction versus CO bond fission in initiating dimethyl ether combustion[J]. Combust Flame, 1999, 118(1): 312-316.
-
[23]
[23] 卫智虹, 陈艳艳, 王森, 李俊汾, 董梅, 秦张峰, 王建国, 樊卫斌. 酸性分子筛上甲醇催化转化反应机理研究进展[J]. 燃料化学学报, 2013, 41(8): 897-910. (WEI Zhi-hong, CHEN Yan-yan, WANG Sen, LI Jun-fen, DONG Mei, QIN Zhang-feng, WANG Jian-guo, FAN Wei-bin. A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2013, 41(8): 897-910.)
-
[1]
-
-
-
[1]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[2]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[3]
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
-
[4]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[5]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[6]
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
-
[7]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[9]
Xiaoyang Li , Xiaowei Huang , Yimeng Zhang , Huan Liu , Shao Jin , Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035
-
[10]
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
-
[11]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
-
[12]
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
-
[13]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
-
[14]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[15]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[16]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[17]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[18]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[19]
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
-
[20]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(523)
- HTML views(26)