Citation: WANG Bo, WANG Hui, LIU Guang-bo, LI Zhuo, LI Xue-min, WU Jin-hu. Catalytic conversion of dimethyl ether to toluene over the molecular sieves modified with tungsten oxide[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(8): 994-1000. shu

Catalytic conversion of dimethyl ether to toluene over the molecular sieves modified with tungsten oxide

  • Corresponding author: WANG Hui,  WU Jin-hu, 
  • Received Date: 19 March 2014
    Available Online: 22 May 2014

    Fund Project: 中国科学院重大科研装备研制项目(2011022) (2011022)中国科学院战略先导专项(XDA07070301) (XDA07070301)山东省"泰山学者"岗位项目(ts200824085)。 (ts200824085)

  • The catalytic performance of various zeolites modified with tungsten oxide in the conversion of dimethyl ether (DME) to toluene in the presence of oxygen was investigated in a continuous flow fixed-bed reactor. The results indicated that WO3/HZSM-5 as a catalyst is highly selective in the conversion of DME to toluene; under the optimized conditions, i.e. atmospheric pressure, 290 ℃, and with a DME/O2 mol ratio of 2:1, the conversion of DME is 98.97%, with the selectivity of 39.71% to toluene. The characterization results about the catalyst structure and acidity illustrate that the porous structure of ZSM-5 is suitable for the formation of toluene from DME. The doping of WO3 adjusts the distribution of the surface acid sites and then inhibits the formation of side-products in the presence of oxygen, which is able to enhance the selectivity to toluene.
  • 加载中
    1. [1]

      [1] NI Y, SUN A, WU X, HAI G, HU J, LI T, LI G. The preparation of nano-sized H[Zn.Al] ZSM-5 zeolite and its application in the aromatization of methanol[J]. Microporous Mesoporous Mater, 2011, 143(2): 435-442.

    2. [2]

      [2] XIA J, MAO D, ZHANG B, CHEN Q, TANG Y. One-step synthesis of dimethyl ether from syngas with Fe-modified zeolite ZSM-5 as dehydration catalyst[J]. Catal Lett, 2004, 98(4): 235-240.

    3. [3]

      [3] BORONAT M, MART NEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. PCCP, 2011, 13(7): 2603-2612.

    4. [4]

      [4] LIU J, XUE H, HUANG X, LI Y, SHEN W. Dimethyl ether carbonylation to methyl acetate over HZSM-35[J]. Catal Lett, 2010, 139(1/2): 33-37.

    5. [5]

      [5] LUZGIN M V, KAZANTSEV M S, VOLKOVA G G, STEPANOV A G. Solid-state NMR study of the kinetics and mechanism of dimethyl ether carbonylation on cesium salt of 12-tungstophosphoric acid modified with Ag, Pt, and Rh[J]. J Catal, 2013, 308: 250-257.

    6. [6]

      [6] LIU H, IGLESIA E. Selective oxidation of dimethylether to formaldehyde on small molybdenum oxide domains[J]. J Catal, 2002, 208(1): 1-5.

    7. [7]

      [7] LIU G, ZHANG Q, HAN Y, TAN Y. Direct oxidation of dimethyl ether to ethanol over WO3/HZSM-5 catalysts[J]. Catal Commun, 2012, 26: 173-177.

    8. [8]

      [8] SAN X, ZHANG Y, SHEN W, TSUBAKI N. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy Fuels, 2009, 23(5): 2843-2844.

    9. [9]

      [9] LIU G, ZHANG Q, HAN Y, TSUBAKI N, TAN Y. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem, 2013, 15(6): 1501-1504.

    10. [10]

      [10] 刘广波, 张清德, 韩怡卓, 椿范立, 谭猗生. MoO3-SnO2催化剂上二甲醚低温氧化高选择性制备甲酸甲酯[J]. 燃料化学学报, 2013, 41(2): 223-227. (LIU Guang-bo, ZHANG Qing-de, HAN Yi-zhuo, TSUBAKI Noritatsu, TAN Yi-sheng. Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2): 223-227.)

    11. [11]

      [11] LIU H, IGLESIA E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 keggin structures[J]. J Phys Chem, 2003, 107(39): 10840-10847.

    12. [12]

      [12] ZHANG Q, TAN Y, YANG C, HAN Y. MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethy ether to dimethoxymethane[J]. J Mol Catal A: Chem, 2007, 263(1): 149-155.

    13. [13]

      [13] ZHANG Q, TAN Y, YANG C, HAN Y. Research on catalytic oxidation of dimethyl ether to dimethoxymethane over MnCl2 modified heteropolyacid catalysts[J]. Catal Commun, 2008, 9(9): 1916-1919.

    14. [14]

      [14] YAGITA H, ASAMI K, MURAMATSU A, FUJIMOTO K. Oxidative dimerization of dimethyl ether with solid catalysts[J]. Appl Catal, 1989, 53(1): L5-L9.

    15. [15]

      [15] 苗青, 董梅, 牛宪军, 王浩, 樊卫斌, 王建国, 秦张峰. 含镓ZSM-5分子筛的制备及其在甲醇芳构化反应中的催化性能[J]. 燃料化学学报, 2012, 40(10): 1230-1239. (MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1230-1239.)

    16. [16]

      [16] OLSBYE U, SVELLE S, BJ RGEN M, BEATO P, JANSSENS T V, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51(24): 5810-5831.

    17. [17]

      [17] 向杰, 余林, 吕逵弟, 孙明, 郝志峰, 余倩, 徐洁瑜, 王雪涛. 二甲醚催化氧化制下游化学品HZSM-5催化氧化制碳氢化合物[J]. 化工学报, 2007, 58(4): 887-891. (XIANG Jie, YU Lin, LV Kui-di, SUN Ming, HAO Zhi-feng, YU Qian, XU Jie-yu, WANG Xue-tao. Catalytic oxidation of dimethyl ether to downstream products[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(4): 887-891.)

    18. [18]

      [18] ZENG J, X Z, ZHANG H, LIN G, TSAI K R. Nonoxidative dehydrogenation and aromatization of methane over W/HZSM-5-based catalysts[J]. Catal Lett, 1998, 53(1): 119-124.

    19. [19]

      [19] XIONG Z, ZHANG H, LIN G, ZENG J. Study of W/HZSM-5-based catalysts for dehydro aromatization of CH4 in absence of O2[J]. Catal Lett, 2001, 74(3/4): 223-239.

    20. [20]

      [20] YANG J, DENG F, ZHANG M, LUO Q, YE C. W/HZSM-5 catalyst for methane dehydro-aromatization: A multinuclear MAS NMR study[J]. J Mol Catal A: Chem, 2003, 202(1/2): 239-246.

    21. [21]

      [21] DI Z, YANG C, JIAO X, LI J, WU J, ZHANG D. A ZSM-5/MCM-48 based catalyst for methanol to gasoline conversion[J]. Fuel, 2013, 104: 878-881.

    22. [22]

      [22] FRANCISCO J S. On the competition between hydrogen abstraction versus CO bond fission in initiating dimethyl ether combustion[J]. Combust Flame, 1999, 118(1): 312-316.

    23. [23]

      [23] 卫智虹, 陈艳艳, 王森, 李俊汾, 董梅, 秦张峰, 王建国, 樊卫斌. 酸性分子筛上甲醇催化转化反应机理研究进展[J]. 燃料化学学报, 2013, 41(8): 897-910. (WEI Zhi-hong, CHEN Yan-yan, WANG Sen, LI Jun-fen, DONG Mei, QIN Zhang-feng, WANG Jian-guo, FAN Wei-bin. A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2013, 41(8): 897-910.)

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    3. [3]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    6. [6]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    10. [10]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

    11. [11]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    13. [13]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    18. [18]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    19. [19]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    20. [20]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

Metrics
  • PDF Downloads(0)
  • Abstract views(524)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return