Citation: CHEN Ying, XING Chen, JI Sheng-lun, LIANG Hong-bao. Preparation of HPA/Bi2WO6 and its photocatalytic properties for denitrification[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(8): 978-985. shu

Preparation of HPA/Bi2WO6 and its photocatalytic properties for denitrification

  • Corresponding author: LIANG Hong-bao, 
  • Received Date: 22 May 2014
    Available Online: 24 June 2014

    Fund Project: 国家自然科学基金(50476091)。 (50476091)

  • The HPA/Bi2WO6 was prepared with Na2WO4·2H2O, Bi(NO3)3·5H2O and different surfactant templates. The prepared sample was dried by the supercritical fluid drying (SCFD) method. It was characterized with XRD, FT-IR and SEM techniques and N2 sorption experiment. Its photocatalytic properties were evaluated with denitrification of nitrogen-containing simulated oil as model reaction. It was shown that the sodium dodecyl sulfate (SDS) should be chosen as template. With this template, a highly dispersed, crystalline and active photocatalyst was obtained. This catalyst had a larger specific surface area. The SCFD method effectively decreased pore collapse and particles agglomeration degree, consequently increasing the specific surface area and improving the catalytic performance. Immobilization of H3PW12O40 on Bi2WO6 increased the surface acid sites, and hence the photocatalytic activity. When the H3PW12O40 loading was 10%, about 92.08% of nitrogen in simulated oil were removed by shining for 3 h with a xenon lamp at the mcatalysts/msimulated oil ratio of 1:100.
  • 加载中
    1. [1]

      [1] MCDOWELL N A, KNIGHT K S and LIGHTFOOT P. Unusual high-temperature structural behaviour in ferroelectric Bi2WO6[J]. Chem-Eur J, 2006, 12(5): 1493-1499.

    2. [2]

      [2] TANG J W, ZOU Z G and YE J H. Photophysical and photocatalytic properties of Bi2WO6[J]. Catal Lett, 2004, 92(53): 256-270.

    3. [3]

      [3] MATSUDA A, DAIKO Y, ISHIDA T, TADANAGA K and TATSUMISAGO M. Characterization of proton-conductive SiO2-H3PW12O40 composites prepared by mechanochernical treatment[J]. Solid State Ionics, 2007, 178(7/10): 709-712.

    4. [4]

      [4] HORI H, HAYAKAWA E, KOIKE K, EINAGA H and IBUSUKI T. Decomposition of nonafluoropentanoic acid by heteropolyacid photocatalyst H3PW12O40 in aqueous solution[J]. J Mol Catal A: Chem, 2004, 211(1/2): 35-41.

    5. [5]

      [5] GKIKA E, TROUPIS A, HISKIA A and PAPACONSTANTINOU E. Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates[J]. Appl Catal B: Environ, 2006, 62(1/2): 28-34.

    6. [6]

      [6] KOZHEVNIKOV I V, MATVEEV K I. Homogeneous catalysts based on heteropoly acids(review)[J]. Appl Catal, 1983, 5(2): 135-150.

    7. [7]

      [7] 冯妍, 吴青松, 张国英, 孙亚秋. 可见光响应型Bi2WO6光催化剂[J]. 化学进展, 2012, 24(11): 2124-2131. (FENG Yan, WU Qing-song, ZHANG Guo-ying, SUN Ya-qiu. Visible-light responsed Bi2WO6 photocatalysts[J]. Progress in Chemistry, 2012, 24(11): 2124-2131.)

    8. [8]

      [8] 李松田, 吴春笃, 闫永胜, 吕晓萌, 霍鹏伟. 杂多酸光催化降解有机污染物[J]. 化学进展, 2008, 20(5): 690-698. (LI Song-tian, WU Chun-du, YAN Yong-sheng, LV Xiao-meng, HUO Peng-wei. Photodegradation of organic contaminant by heteropoly acid[J]. Progress in Chemistry, 2008, 20(5): 690-698.)

    9. [9]

      [9] 刘理华, 刘书群, 柴永明, 刘晨光. 磷化镍催化剂的制备机理及其加氢脱氮性能[J]. 燃料化学学报, 2013, 41(3): 335-340. (LIU Li-hua, LIU Shu-qun, CHAI Yong-ming, LIU Chen-guang. Preparation mechanism and hydridenitrogenation performance of nickel phosphide catalyst[J]. Journal of Fuel Chemistry and Technology, 2013, 41(3): 335-340.)

    10. [10]

      [10] 张静畅, 李青, 曹维良. 超临界流体干燥法制备纳米TiO2-ZnO复合催化剂及其对苯酚降解的光催化性能[J]. 催化学报, 2003, 24(11): 831-834. (ZHANG Jing-chang, LI Qing, CAO Wei-liang. Preparation of nanosized TiO2-ZnO composite catalyst and its photocatalytic performance for degradation of phenol[J]. Chinese Journal of Catalysis, 2003, 24(11): 831-834.)

    11. [11]

      [11] 付贤智, 丁正新, 苏文锐, 李旦振. 二氧化钛基固体超强酸的结构及其光催化氧化性能[J]. 催化学报, 1999, 20(3): 321-325. (FU Xian-zhi, DING Zheng-xin, SU Wen-yue, LI Dan-zhen. Structure of titania-based solid superacids and their properties for photocatalytic oxidation[J]. Chinese Journal of Catalysis, 1999, 20(3): 321-325.)

    12. [12]

      [12] 孙亚萍, 赵靓, 赵景联, 侯永平, 种法国, 梁勇. 二氧化钛固载杂多酸催化剂的制备及其光催化性能研究[J]. 高校化学工程学报, 2006, 20(4): 554-558. (SUN Ya-ping, ZHAO Liang, ZHAO Jing-lian, HOU Yong-ping, CHONG Fa-guo, LIANG Yong. Preparation and photocatalytic activity of heteropolyacid supported on titanium dioxide photocatalysts[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(4): 554-558.)

    13. [13]

      [13] 陈颖, 邢宸, 姬生伦, 梁宏宝, 张宏宇, 陈艳. 微波液相法一步合成H3PW12O40/Bi2WO6光催化剂及其脱氮性能[J]. 高等学校化学学报, 2014, 35(6): 1277-1285. (CHEN Ying, XING Chen, JI Sheng-lun, LIANG Hong-bao, ZHANG Hong-yu, CHEN Yan. One-step preparation of H3PW12O40/Bi2WO6 nano-photocatalysts by microwave liquid process and its photocatalysis denitrification properties[J]. Chemical Journal of Chinese Universities, 2014, 35(6): 1227-1285.)

    14. [14]

      [14] SH/T 0162-1992, 石油产品中碱性氮测定法[S]. (SH/T 0162-1992, Method for the determination of basic nitrogen in petroleum products[S].)

    15. [15]

      [15] 井立强, 孙晓君, 蔡伟民, 李晓倩, 付宏刚, 候海鸽, 范乃英. 掺杂Ce的TiO2纳米粒子的光致发光及其光催化活性[J]. 化学学报, 2003, 61(8): 1241-1245. (JING Li-qian, SUN Xiao-jun, CAI Wei-min, LI Xiao-qian, FU Hong-gang, FAN Nai-ying. Photoluminescence of Ce doped TiO2 nanoparticles and their photocatalytic activity[J]. Acta Chimica Sinica, 2003, 61(8): 1241-1245.)

    16. [16]

      [16] BROWN Z K, FRYER P J, NORTON I T, BRIDSON R H. Drying of agar gels using supercritical carbon dioxide[J]. J Supercrit Fluid, 2010, 54(1): 89-95.

    17. [17]

      [17] GARCLA-GONZALEZ C A, UY J J, ALNAIEF M, SMIRNOVA I. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method[J]. Carbohyd Polym, 2012, 88(4): 1378-1386.

    18. [18]

      [18] 王德胜, 闫亮, 王晓来. 杂多酸催化剂研究进展[J]. 分子催化, 2012, 26(4): 366-375. (WANG De-sheng, YAN Liang, WANG Xiao-lai. Supercritical carbon dioxide drying[J]. Journal of Molecular Catalysis(China), 2012, 26(4): 366-375.)

    19. [19]

      [19] 李莉, 马禹, 曹艳珍, 计远, 郭伊荇. 有序介孔材料H6P2W18/TiO2(Brij-76)的制备与微波增强光催化降解一氯苯[J]. 物理化学学报, 2009, 25(7): 1461-1466. (LI Li, MA Yu, CAO Yan-zhen, JI Yuan, GUO Yi-xing. Preparation of periodic mesoporous H6P2W18/TiO2(Brij-76) composite and microwave enhanced photocatalytic degradation of monochlorbenzene[J]. Acta Physico-Chimica Sinica, 2009, 25(7): 1461-1466.)

    20. [20]

      [20] TANG J W, ZOU Z G, YE J H. Photophysical and photocatalytic properties of AgInW2O8[J]. J Phys Chem B, 2003, 107(51): 14265-14269.

    21. [21]

      [21] OZER R R, FERRY J L. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems[J]. Environ Sci Technol, 2001, 35(15): 3242-3246.

  • 加载中
    1. [1]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    4. [4]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    10. [10]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    11. [11]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    20. [20]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

Metrics
  • PDF Downloads(0)
  • Abstract views(682)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return