Citation: HAN Meng-meng, DAI Ji-cai, CHEN Ji-xiang. Influence of Ni crystallite size on deoxygenation of methyl laurate to hydrocarbons over Ni/SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(8): 965-972. shu

Influence of Ni crystallite size on deoxygenation of methyl laurate to hydrocarbons over Ni/SiO2 catalyst

  • Corresponding author: CHEN Ji-xiang, 
  • Received Date: 10 January 2014
    Available Online: 1 May 2014

    Fund Project: 国家自然科学基金(21176177) (21176177)天津市自然科学基金(12JCYBJC13200)。 (12JCYBJC13200)

  • Three Ni/SiO2 catalysts with different Ni crystallite sizes were prepared by the incipient wetness impregnation-drying-reduction and incipient wetness impregnation-drying-calcination-reduction methods. The catalysts were characterized by H2-TPR, XRD, TEM, H2 chemisorption, NH3-TPD and TGA techniques. Their catalytic performances in the deoxygenation of methyl laurate to undecane (C11) and dodecane (C12) were evaluated in a fixed bed reactor. The effects of Ni crystallite size on the catalyst structure and performance were investigated. It was found that the impregnation-drying-reduction method gave smaller Ni crystallite size, and the high reduction temperature promoted the growth of Ni crystallite. With the increase of the Ni crystallite size, the turnover frequency of methyl laurate increased, while the total selectivity to C11 and C12 (sC11+C12), C11/C12 mol ratio and the selectivity to cracking products decreased. We suggest that the deoxygenation of methyl laurate on Ni/SiO2 is structurally sensitive. The effects of weight hourly space velocity (WHSV) on performance of Ni/SiO2 were also investigated. As WHSV increased, the methyl laruate conversion, sC11+C12, C11/C12 mol ratio and the selectivity to cracking products decreased. In addition, CO and CO2 generated from the decarbonylation/decarboxylation pathway were converted to CH4, indicating that Ni/SiO2 had high activity for methanation. It was also found that the sintering of small Ni crystallites, the adsorption of organic compounds and carbon deposit led to catalyst deactivation.
  • 加载中
    1. [1]

      [1] 谭天伟, 王芳, 邓立, 徐家立, 王丽娟. 生物柴油的生产和应用[J]. 现代化工, 2002, 22(2): 4-6. (TAN Tian-wei, WANG Fang, DENG Li, XU Jia-li, WANG Li-juan. Production and application of biodiesel[J]. Modern Chemical Industry, 2002, 22(2): 4-6.)

    2. [2]

      [2] 左华亮, 刘琪英, 王铁军, 史娜, 刘建国, 马隆龙. 负载的Ni催化剂上植物油脂加氢脱氧制备第二代生物柴油[J]. 燃料化学学报, 2012, 40(9): 1067-1073. (ZUO Hua-liang, LIU Qi-ying, WANG Tie-jun, SHI Na, LIU Jian-guo, MA Long-long. Catalytic hydrodeoxygenation of vegetable oil over Ni catalysts to produce second-generation biodiesel[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1067-1073.)

    3. [3]

      [3] SHARMA Y C, SINGH B, UPADHYAY S N. Advancements in development and characterization of biodiesel: A review[J]. Fuel, 2008, 87(12): 2355-2373.

    4. [4]

      [4] MARCHETTI J M, MIGUEL V U, ERRAZU A F. Possible methods for biodiesel production[J]. Renew Sus Energy Rev, 2007, 11(6): 1300-1311.

    5. [5]

      [5] MORGAN T, GRUBB D, SANTILLAN-JIMENEZ E, CROCKER M. Conversion of triglycerides to hydrocarbons over supported metal catalysts[J]. Top Catal, 2010, 53(11/12): 820-829.

    6. [6]

      [6] LESTARI S, SIMAKOVA I, TOKAREV A, MÄKI-ARVELA P, ERÄNEN K, MURZIN D Y. Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst[J]. Catal Lett, 2008, 122(3/4): 247-251.

    7. [7]

      [7] LESTARI S, MÄKI-ARVELA P, ERÄNEN K, BELTRAMINI J, LU G Q M, MURZIN D Y. Diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported Pd nanoparticles on SBA-15 catalysts[J]. Catal Lett, 2010, 134(3/4): 250-257.

    8. [8]

      [8] SENOL O I, RYYMIN E M, VILJAVA T R, KRAUSE A O I. Reactions of methyl heptanoate hydrodeoxygenation on sulphided catalysts[J]. J Mol Catal A: Chem, 2007, 268(1/2): 1-8.

    9. [9]

      [9] ZUO H L, LIU Q Y, WANG T J, MA L L, ZHANG Q, ZHANG Q. Hydrodeoxygenation of methyl palmitate over supported Ni catalysts for diesel-like fuel production[J]. Energy Fuels, 2012, 26(6): 3747-3755.

    10. [10]

      [10] PENG B X, YUAN X G, ZHAO C, LERCHER J A. Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes[J]. J Am Chem Soc, 2012, 134(22): 9400-9405.

    11. [11]

      [11] SNÅRE M, KUBICKOVÁ I, MÄKI-ARVELA P, ERÄNEN K, MURZIN D Y. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel[J]. Ind Eng Chem Res, 2006, 45(16): 5708-5715.

    12. [12]

      [12] SONG W J, CHEN Z, LERCHER J A. Importance of size and distribution of Ni nanoparticles for the hydrodeoxygenation of microalgae oil[J]. Chem Eur J, 2013, 19(30): 9833-9842.

    13. [13]

      [13] LOUIS C, CHENG Z-X, CHE M. Characterization of Ni/SiO2 catalysts during impregnation and further thermal activation treatment leading to metal particles[J]. J Phys Chem, 1993, 97(21): 5703-5712.

    14. [14]

      [14] LI K L, WANG R J, CHEN J X. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy Fuels, 2011, 25(3): 854-863.

    15. [15]

      [15] CLAUSE O, BONNEVIOT L, CHE M. Effect of the preparation method on the thermal stability of silica-supported nickel oxide as studied by EXAFS and TPR techniques[J]. J Catal, 1992, 138(1): 195-205.

    16. [16]

      [16] RODRIGUEZ J A, HANSON J C, FRENKEL A I, KIM J Y, PREZ M. Experimental and theoretical studies on the reaction of H2 with NiO: Role of O vacancies and mechanism for oxide reduction[J]. J Am Chem Soc, 2002, 124(2): 346-354.

    17. [17]

      [17] FURSTENAU R P, MCDOUGALL G, LANGELL M A. Initial stages of hydrogen reduction of NiO(100)[J]. Surf Sci, 1985, 150(1): 55-79.

    18. [18]

      [18] HADJⅡVANOV K, MIHAYLOV M, KLISSURSKI D, STEFANOV P, ABADJIEVA N, VASSILEVA E, MINTCHEV L. Characterization of Ni/SiO2 catalysts prepared by successive deposition and reduction of Ni2+ ions[J]. J Catal, 1999, 185(2): 314-323.

    19. [19]

      [19] FANG K G, REN J, SUN Y H. Effect of nickel precursors on the performance of Ni/AlMCM-41 catalysts for n-dodecane hydroconversion[J]. J Mol Catal A: Chem, 2005, 229 (1/2): 51-58.

    20. [20]

      [20] 刘旭光. 二氧化硅负载镍或磷化镍催化氯苯气相加氢脱氯的研究[D]. 天津: 天津大学, 2007. (LIU Xu-guang. Study on catalytic hydrodechlorination of chlorobenzen in gas phase over silica supported nickel or nickel phosphide catalysts[D]. Tianjin: Tianjin University, 2007.)

    21. [21]

      [21] YANG Y, CHEN J X, SHI H. Deoxygenation of methyl laurate as a model compound to hydrocarbons on Ni2P/SiO2, Ni2P/MCM-41, and Ni2P/SBA-15 catalysts with different dispersions[J]. Energy Fuels, 2013, 27(6): 3400-3409.

  • 加载中
    1. [1]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    4. [4]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    5. [5]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    6. [6]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    7. [7]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    13. [13]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    14. [14]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    15. [15]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    16. [16]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    17. [17]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(0)
  • Abstract views(415)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return