Citation: XIONG Wei, DING Ming-yue, TU Jun-ling, CHEN Lun-gang, WANG Tie-jun, ZHANG Qi, MA Long-long. Methanation of biomass pyrolysis gas over Ni catalyst with different supports[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(8): 958-964. shu

Methanation of biomass pyrolysis gas over Ni catalyst with different supports

  • Corresponding author: WANG Tie-jun, 
  • Received Date: 4 March 2014
    Available Online: 27 May 2014

    Fund Project: 国家自然科学基金(U1362109,51206172) (U1362109,51206172)国家重点基础研究发展规划(973计划,2013CB228105) (973计划,2013CB228105)国家重大科学仪器设备开发专项(2012YQ16000704)。 (2012YQ16000704)

  • The supported Ni-based catalysts were prepared by impregnation method. Effects of different supports (SiO2, ZrO2, CeO2, Al2O3 and Al2O3-CeO2) and water vapour on catalyst microstructure and their performance in biomass pyrolysis gas methanation were investigated. The results indicated that CO conversion increased gradually, and the CH4 selectivity increased firstly, and then decreased with the increase of adding water vapor amount. Compared to SiO2, ZrO2 and CeO2, Al2O3 presented higher BET surface area and Ni metal dispersion, which promoted the activity and selectivity for biomass pyrolysis gas methanation. Furthermore, the Al2O3-CeO2 modified Ni-based catalyst showed more nickel metal loading and active metal dispersion comparing to the Ni-Al2O3 catalyst, exhibiting more excellent methanation performances at lower temperature. CO conversion reached 97%, and CH4 growth rate reached 110% over the Ni-Al2O3-CeO2 catalyst at 300 ℃.
  • 加载中
    1. [1]

      [1] DEMIRBAS M F, BALAT M, BALAT H. Potential contribution of biomass to the sustainable energy development[J]. Energy Convers Manage, 2009, 50(7): 1746-1760.

    2. [2]

      [2] ZHANG J, FATAH N, CAPELA S. Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas[J]. Fuel, 2013, 111: 845-854.

    3. [3]

      [3] KOPYSCINSKI J, SCHILDHAUER T J, BIOLLAZ S. Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review from 1950 to 2009[J]. Fuel, 2010, 89(8): 1763-1783.

    4. [4]

      [4] BAKAR W A W A, ALI R, TOEMEN S. Catalytic methanation reaction over supported nickel-rhodium oxide for purification of simulated natural gas[J]. J Nat Gas Chem, 2011, 20(6): 585-594.

    5. [5]

      [5] PANAGIOTOPOULOU P, KONDARIDES D I, VERYKIOS X E. Selective methanation of CO over supported Ru catalysts[J]. Appl Catal B: Environ, 2009, 88(3): 470-478.

    6. [6]

      [6] PANAGIOTOPOULOU P, KONDARIDES D I, VERYKIOS X E. Selective methanation of CO over supported noble metal catalysts: Effects of the nature of the metallic phase on catalytic performance[J]. Appl Catal A: Gen, 2008, 344(1): 45-54.

    7. [7]

      [7] LIU Z, CHU B, ZHAI X. Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor[J]. Fuel, 2012, 95: 599-605.

    8. [8]

      [8] CHITPONG N, PRASERTHDAM P, JONGSOMJIT B. A study on characteristics and catalytic properties of Co/ZrO2-B catalysts towards methanation[J]. Catal Lett, 2009, 128(1/2): 119-126.

    9. [9]

      [9] KANG S H, RYU J H, KIM J H. Co-methanation of CO and CO2 on the NiX-Fe1-X/Al2O3 catalysts: Effect of Fe contents[J]. Korean J Chem Eng, 2011, 28(12): 2282-2286.

    10. [10]

      [10] STRUIS R P W J, SCHILDHAUER T J, CZEKAJ I. Sulphur poisoning of Ni catalysts in the SNG production from biomass: A TPO/XPS/XAS study[J]. Appl Catal A: Gen, 2009, 362(1): 121-128.

    11. [11]

      [11] LIU J, SHEN W, CUI D. Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors[J]. Catal Commun, 2013, 38: 35-39.

    12. [12]

      [12] HU D, GAO J, PING Y. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Ind Eng Chem Res, 2012, 51(13): 4875-4886.

    13. [13]

      [13] WANG Y, WU R, ZHAO Y. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases[J]. Catal Today, 2010, 158(3): 470-474.

    14. [14]

      [14] 刘文燕, 赵安民, 张海涛, 应卫勇, 房鼎业. 制备条件对 Ni/ZrO2-SiO2催化剂煤气甲烷化的影响[J]. 燃料化学学报, 2012, 40(1): 86-92. (LIU Wen-yan, ZHAO An-min, ZHANG Hai-tao, YING Wei-yong, FANG Ding-ye. Effect of preparation condition on catalytic performance of Ni/ZrO2-SiO2 for methanation of coal gas[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 86-92.)

    15. [15]

      [15] LIU H, ZOU X, WANG X. Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen[J]. J Nat Gas Chem, 2012, 21(6): 703-707.

    16. [16]

      [16] 徐莹, 孙锐, 栾积毅, 吴少华. 生物质热解气及其成分气再燃还原NO的数值模拟与机制分析[J]. 中国电机工程学报, 2009, (35): 7-14. (XU Ying, SUN Rui, LUAN Ji-yi, WU Shao-hua. Numerical simulation and mechanism analysis on NO reduction by biomass pyrolysis gas and its contented species[J]. Proceedings of the CSEE, 2009, (35): 7-14.)

    17. [17]

      [17] TAKENAKA S, SHIMIZU T, OTSUKA K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts[J]. Int J Hydrogen Energy, 2004, 29(10): 1065-1073.

    18. [18]

      [18] RAZZAQ R, ZHU H, JIANG L. Catalytic methanation of CO and CO2 in coke oven gas over Ni-Co/ZrO2-CeO2[J]. Ind Eng Chem Res, 2013, 52(6): 2247-2256.

    19. [19]

      [19] 赵亮, 陈允捷. 国外甲烷化技术发展现状[J]. 化工进展, 2012, 31(S1): 176-178. (Zhao Liang, Chen Yun-jie. Developement phenomina of foreign methanation process[J]. Chemical Industry and Engineering Progress, 2012, 31(S1): 176-178.)

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    7. [7]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    14. [14]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    15. [15]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    16. [16]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    18. [18]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    19. [19]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    20. [20]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

Metrics
  • PDF Downloads(0)
  • Abstract views(600)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return