Citation: HUANG Guo-bao, WANG Zhi-qing, LI Qing-feng, HUANG Jie-jie, FANG Yi-tian. Syngas methanation over nickel catalyst in liquid-phase[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(8): 952-957. shu

Syngas methanation over nickel catalyst in liquid-phase

  • Corresponding author: LI Qing-feng, 
  • Received Date: 18 February 2014
    Available Online: 29 March 2014

    Fund Project: 国家自然科学基金青年科学基金(21106173) (21106173)中国科学院战略性先导科技专项(XDA07050100) (XDA07050100)山西省青年科技研究基金(2013021007-2) (2013021007-2)中国科学院山西煤炭化学研究所青年人才项目(2011SQNRC01)。 (2011SQNRC01)

  • Unsupported metal nickel catalysts were prepared by liquid phase reduction method. The catalytic performance of the catalysts for syngas methanation were conducted in an autoclave using decalin as the hydrogen donor solvent at different operation conditions, such as temperature, mol ratio of H2/CO in feed gas. And the catalyst characterizations were conducted by means of XRD, SEM, H2-TPR.The results showed that the content of CH4 in the product gas was 89.39% when 2% catalyst was used at 330 ℃, and the corresponding conversions of CO and H2 were 94.56% and 92.60%, respectively. When 4% catalyst was used, the CO conversion was further improved to more than 99% while the content of CH4 in the product gas exceeded 94.26%. The best operation temperature of syngas methanation in liquid phase was 330 ℃and the optimum range of H2/CO mol ratio in feed was 2.20~2.67.
  • 加载中
    1. [1]

      [1] 杨伯伦, 李星星, 伊春海, 蒋雪冬, 张勇, 周晓奇. 合成天然气技术进展[J]. 化工进展, 2011, 30(1): 110-116. (YANG Bo-lun, LI Xing-xing, YI Chun-hai, JIANG Xue-dong, ZHANG Yong, ZHOU Xiao-qi.Technological progress of synthetic natural gas[J]. Chemical Industry and Engingeering Progress, 2011, 30(1): 110-116.)

    2. [2]

      [2] 张小卫, 张俊圆. 我国煤制天然气现状及"十二五"发展趋势分析[J]. 化学工程与装备, 2011, 7: 151-152. (ZHANG Xiao-wei, ZHANG Jun-yuan. Present situation of coal-to-nature gas and the development trend analysis of "twelfth five-year" in our country[J]. Chemical Engingeering&Euipment, 2011, 7: 151-152.)

    3. [3]

      [3] CAECILIA R V, MARTIN J, KRZYSZTOF J P. Exergy analysis of biomass-to-synthetic natural gas(SNG) process via indirect gasification of various biomass feedstock[J]. Energy, 2011, 36(6): 3825-3837.

    4. [4]

      [4] SAKAE T, TORU S, KIYOSHI O. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts[J]. Int J Hydrogen Energy, 2004, 29(10): 1065-1073.

    5. [5]

      [5] SHI P, LIU C J. Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment[J]. Catal Lett, 2009, 133(1/2): 112-118.

    6. [6]

      [6] URASAKI K, ENDO K I, TAKAHIRO T, KIKUCHI R, KOJIMA T, SATOKAWA S. Effect of support materials on the selective methanation of CO over Ru catalysts[J]. Top Catal, 2010, 53(7/10): 707-711.

    7. [7]

      [7] LIU Q H, DONG X F, MO X M, LIN W M. Selective catalytic methanation of CO in hydrogen rich gases over NiZrO2 catalyst[J]. J Nat Gas Chem, 2008, 17(3): 268-272.

    8. [8]

      [8] 卢红选, 秦榜辉, 孙鲲鹏, 肖利华, 徐贤伦. 预处理及反应条件对负载型钌催化剂甲烷化性能的影响[J]. 天然气化工, 2004, 29(4): 1-4. (LU Hong-xuan, QIN Bang-hui, SUN Kun-peng, XIAO Li-hua, XU Xian-lun. Effect of pretreatment on catalytic performance of Ru/Al2O3 for methanation[J]. Natural Gas Chemical Industry, 2004, 29(4): 1-4.)

    9. [9]

      [9] 张成. CO与CO2甲烷化反应研究进展[J]. 化工进展, 2007, 26(9): 1269-1273. (ZHANG Cheng. Research progress of methanation of carbon monoxide and carbon dioxide[J]. Chemical Industry and Engingeering Progress, 2007, 26(9): 1269-1273.)

    10. [10]

      [10] KOU Y, WANG H L, NIU J Z, JI W J. Surface coordinate geometry of iron catalysts distinctive behaviors of in CO hydrogenation[J]. J Phys Chem, 1996, 100(6): 2330-2333.

    11. [11]

      [11] ALFRED P W, MARTIN S, CHRISTOPH T, GERHARD K. Aerosol catalysis on nickel nanoparticles[J]. J Nanopart Res, 1999, 1(2): 253-265.

    12. [12]

      [12] HIPPE C, LAMBER R, SCHULZ G, SCHUBER U. Influence of the strong metal support interaction on the CO chemisorption at a Pt/SiO2 catalyst[J]. Catal Lett, 1997, 43(3/4): 195-199.

    13. [13]

      [13] CZEKAJ I, LOVIAT F, RAIMONDI F, WAMBACH J, BIOLLAZ S, WOKAUN A. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy(XPS)[J]. Appl Catal A: Gen, 2007, 329: 68-78.

    14. [14]

      [14] 路霞, 陈世恒, 王万丽, 马紫峰. CO甲烷化Ni基催化剂的研究进展[J]. 石油化工, 2010, 39(3): 340-354. (LU Xia, CHEN Shi-heng, WANG Wan-li, MA Zi-feng. Progress in Ni based catalysts for CO methanation[J]. Petrochemical Technology, 2010, 39(3): 340-354.)

    15. [15]

      [15] 崔晓曦, 张庆庚, 李忠, 牛凤芹, 范辉, 郑华艳, 闫少伟. 一种焦炉煤气进行甲烷化合成天然气的工艺: 中国, 101979475A[P]. 2011-02-23. (CUI Xiao-xi, ZHANG Qing-geng, LI zhong, NIU feng-qin, FAN hui, ZHENG hua-yan, YAN shao-wei. Process of coke-oven gas methanation produce synthetic nature gas: CN, 101979475A[P]. 2011-02-23.)

    16. [16]

      [16] 张庆庚, 李忠, 闫少伟, 崔晓曦, 范辉, 何忠, 郑华艳, 曹会博. 一种煤制合成气进行甲烷化合成天然气的工艺: 中国, 101979476B. 2013-05-29. (ZHANG Qing-geng, Li Zhong, YAN Shao-wei, CUI Xiao-xi, FAN Hui, HE Zhong, ZHENG Hua-yan, CAO Hui-bo. Process of coal-to-syngas methanation produce synthetic nature gas: CN, 101979476B. 2013-05-29.)

    17. [17]

      [17] 薛永兵, 凌开成, 邹刚明. 煤直接液化中溶剂的作用和种类[J]. 煤炭转化, 1999, 22(4): 1-4. (XUE Yong-bing, LING Kang-cheng, ZOU Gang-ming. Functions and kinds of solvents in coal direct liquefaction[J]. Coal Coversion, 1999, 22(4): 1-4.)

    18. [18]

      [18] ATSUSHI I, SHINJI M, TOSHIAKI K. Elucidation of hydrogen transfer mechanisms in coal liquefaction using a tritium tracer method: Effects of solvents on hydrogen exchange reactions of coals with tritiated molecular hydrogen[J]. Fuel, 1995, 74(1): 63-70.

    19. [19]

      [19] 李军, 张秀成, 姚铁军, 霍尚义. 抗水合氧化铝载体研究进展[J]. 工业催化, 2003, 11(8): 48-52. (LI Jun, ZHANG Xiu-cheng, YAO Tie-jun, HUO Shang-yi. Developments preperation of hydration-tolerant catalysts supports[J]. Industrial Cataltsis, 2003, 11(8): 48-52.)

    20. [20]

      [20] ANDREW D S, GRAINNE B, SONG C S. Shape-selective hydrogenation of naphthalene over zeolite-supported Pt and Pd catalysts[J]. Catal Today, 1996, 31(1/2): 45-56.

    21. [21]

      [21] 徐超, 王兴军, 胡贤辉, 陈雪莉, 王辅臣. 镍基催化剂在甲烷化过程中积碳的研究[J]. 化学世界, 2010: 98-99. (XU Chao, WANG Xing-jun, HU Xiao-hui, CHEN Xue-li, WANG Fu-chen. Research of carbon deposition in the methanation over nickel-based catalysts[J]. Chemical Word, 2010: 98-99.)

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    9. [9]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    12. [12]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    18. [18]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    19. [19]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    20. [20]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

Metrics
  • PDF Downloads(0)
  • Abstract views(524)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return