Citation: LI Qu, QIN Wu, ZHANG Jun-jiao, CHENG Wei-liang, DONG Chang-qing. Characteristics and kinetics of chemical looping combustion of Mn-doped Fe2O3 oxygen carrier with CO[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(8): 932-937. shu

Characteristics and kinetics of chemical looping combustion of Mn-doped Fe2O3 oxygen carrier with CO

  • Corresponding author: QIN Wu, 
  • Received Date: 15 April 2014
    Available Online: 10 June 2014

    Fund Project: 国家自然科学基金(51206044)。 (51206044)

  • Mn-doped Fe2O3 oxygen carriers with different molar ratios of Fe to Mn were prepared by co-precipitation method, which were characterized by XRD, BET and TEM. Chemical looping combustion tests between Mn-Fe2O3 and CO at different temperatures were performed to investigate the reaction characteristics, and to determine the optimized Mn doping amount and reaction temperature. The results reveal that a rational Mn doping could enhance the reactivity of iron-base oxygen carrier, and the optimal Fe/Mn molar ratio is 50. Multi-cycle experiments confirm the high stability of the optimized oxygen carrier. Furthermore, the reaction kinetic analysis at heating rates of 30, 40, 50 ℃/min shows that the Avrami-Erofeev model is suitable for the reactions, and the activation energy and pre-exponential factor can be calculated according to the kinetic model.
  • 加载中
    1. [1]

      [1] HERZOG H, DRAKE E, ADAMAS E. CO2 capture, reuse and storage technologies for mitigating global climate change-A White Paper[R]. Boston, MA: Massachusetts Institute of Technology, 1997.

    2. [2]

      [2] 卢玲玲, 王树众, 姜峰, 胡昕. 化学链燃烧技术的研究现状及进展[J]. 现代化工, 2007, 27(8): 17-22. (LU Ling-ling, WANG Shu-zhong, JIANG Feng, HU Xin. Research statues and advances in chemical-looping combustion[J]. Modern Chemical Industry, 2007, 27(8):17-22.)

    3. [3]

      [3] SIRIWARDANE R, TIAN H J, RICHARDS G, SIMONYI T, POSTON J. Chemical-looping combustion of coal with metal oxide oxygen carriers[J]. Energy Fuels, 2009, 23(8): 3885-3892.

    4. [4]

      [4] WOLF J, ANHEDEN M, YAN J Y. Comparison of nickel-and iron-based oxygen carrier in chemical-looping combustion for CO2 capture in power generation[J]. Fuel, 2005, 84(8): 993-1006.

    5. [5]

      [5] ABAD A, ADÁNEZ J, CUADRAT A, GARCÍA L F, GAYÁN P, LUIS F, DIEGO L F. Kinetics of redox reactions of ilmenite for chemical-looping combustion[J]. Chem Eng Sci, 2011, 66(4): 689-702.

    6. [6]

      [6] ADÁNEZ J, GARCÍA L F, DIEGO L F, GAYÁN P, CELAYA J, ABAD A. Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion[J]. Ind Eng Chem Res, 2006, 45(8): 2617-2625.

    7. [7]

      [7] 丁宁, 郑瑛, 罗聪, 吴琪珑, 傅培舫, 郑楚光. 化学链燃烧中CaSO4复合载氧体的实验研究[J]. 燃料化学学报, 2011, 39(3): 161-168. (DING Ning, ZHENG Ying, LUO Cong, WU Qi-long, FU Pei-fang, ZHENG Chu-guang. Investigation into compound CaSO4 oxygen carrier for chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, 2011, 39(3): 161-168.)

    8. [8]

      [8] 陈定千, 沈来宏, 肖军, 宋涛, 顾海明, 张思文. 基于镍基修饰的铁矿石载氧体煤化学链燃烧实验[J]. 燃料化学学报, 2012, 40(3): 267-272. (CHEN Ding-qian, SHEN Lai-hong, XIAO Jun, SONG Tao, GU Hai-ming, ZHANG Si-wen. Experimental investigation of hematite oxygen carrier decorated with NiO for chemical looping combustion of coal[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 267-272.)

    9. [9]

      [9] 王保文, 晏蓉, 郑瑛, 赵海波, 郑楚光. CaSO4氧载体煤基合成气化学链燃烧模拟研究[J]. 燃料化学学报, 2011, 39(4): 251-257. (WANG Bao-wen, YAN Rong, ZHENG Ying, ZHAO Hai-bo, ZHENG Chu-guang. Simulated investigation of chemical looping combustion with coal-derived syngas and CaSO4 oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2011, 39(4): 251-257.)

    10. [10]

      [10] 宋涛, 沈来宏, 肖军, 高正平, 顾海明, 张思文. 铁矿石载氧体化学链燃烧高温还原表征[J]. 燃料化学学报, 2011, 39(8): 567-574. (SONG Tao, SHEN Lai-hong, XIAO Jun, GAO Zheng-ping, GU Hai-ming, ZHANG Si-wen. Characterization of hematite oxygen carrier in chemical-looping combustion at a high reduction temperature[J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 567-574.)

    11. [11]

      [11] 高正平, 沈来宏, 肖军, 郑敏, 吴家桦. 煤化学链燃烧Fe2O3载氧体的反应性研究[J]. 燃料化学学报, 2009, 37(5): 513-520. (GAO Zheng-ping, SHEN Lai-hong, XIAO Jun, ZHENG Min, WU Jia-hua. Analysis of reactivity of Fe-based oxygen carrier with coal during chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 513-520.)

    12. [12]

      [12] LAMBERT A, DELQUI C, CLMENECON I, COMTE E, LEFEBVRE V, ROUSSEAU J, DURAND B. Synthesis and characterization of bimetallic Fe/Mn oxides for chemical looping combustion[J]. Energy Procedia, 2009, 1(1): 375-381.

    13. [13]

      [13] KSEPKO E, SIRIWARDANE R, TIAN H J, SIMONYI T, POSTON J A, SCIAZKO M. Effect of H2S on the chemical looping combustion of coal derived synthesis gas over Fe2O3-MnO2 supported on ZrO2/sepiolite[C]//1st International Conference on Chemical Looping. Lyon, France: 2010.

    14. [14]

      [14] SHULMAN A, CLEVERSTAM E, MATTISSON T, LYNGFELT A. Manganese/iron, manganese/nickel, and manganese/silicon oxides used in chemical looping with oxygen uncoupling (CLOU) for combustion of methane[J]. Energy Fuel, 2009, 23(10): 5269-5275.

    15. [15]

      [15] ADÁNEZ J, ABAD A, GARCIA L F, GAYAN P, DIEGO L F. Progress in chemical-looping combustion and reforming technologies[J]. Prog Energy Combust Sci, 2012, 38(2): 215-282.

    16. [16]

      [16] 孙小燕, 向文国, 田文栋, 徐祥, 徐燕骥, 肖云汉. 基于Fe3O4的化学链制氢动力学特性[J]. 燃料化学学报, 2011, 17(6): 535-540. (SUN Xiao-yan, XIANG Wen-guo, TIAN Wen-dong, XU Xiang, XU Yan-ji, XIAO Yun-han. Kinetics of chemical looping hydrogen generation using Fe3O4 as oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2011, 17(6): 535-540.)

    17. [17]

      [17] 魏永刚, 王华, 何方. 氧化铁作为氧载体在无烟燃烧技术中反应活化能的确定[J]. 工业加热, 2007, 36(2): 16-18. (WEI Yong-gang, WANG Hua, HE Fang. Determination of activation energy of ferric oxide as an oxygen carrier used in NFCT[J]. Industrial Heating, 2007, 36(2): 16-18.)

    18. [18]

      [18] BAO L, ZHANG T A, DOU Z H, LÜ G Z, GUO Y N, NI P Y, WU X J, MA J. Kinetics of AlOOH dissolving in caustic solution studied by high-pressure DSC[J]. Trans Nonferrous Met Soc China, 2011, 21(1): 173-178.

    19. [19]

      [19] ADNADEVIC B, JANKOVIC B. Dispersive kinetic model for the non-isothermal reduction of nickel oxide by hydrogen[J]. Physica B, 2008, 403(21/22): 4132-4138.

    20. [20]

      [20] HOSSAIN M M, DE LASA H I. Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC[J]. AIChE J, 2007, 53(7): 1817-1829.

    21. [21]

      [21] JANKOVIC B, ADNADEVIC B, MENTUS S. The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method[J]. Thermochim Acta, 2007, 456(1): 48-55.

  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Junhao DaiZhu HeXinhai LiGuochun YanHui DuanGuangchao LiZhixing WangHuajun GuoWenjie PengJiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063

    4. [4]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    5. [5]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    6. [6]

      Hongyu TangDongming LiuJinfu HuangLiang ZhangYang TangBin HuangYanwei LiShunhua XiaoYiling SunRenheng Wang . Excellent structural stability and electrochemical properties of LiNi0.9Co0.05Mn0.05O2 material by surface Ni2+ anchoring and Cs+ doping. Chinese Chemical Letters, 2025, 36(6): 109987-. doi: 10.1016/j.cclet.2024.109987

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    9. [9]

      Hui BianXinyi YuanNan ZhangZhuo XuJuhong LianRuibin JiangJunqing YanDeng LiShengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034

    10. [10]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    11. [11]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    12. [12]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    13. [13]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    14. [14]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    15. [15]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    16. [16]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    19. [19]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    20. [20]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

Metrics
  • PDF Downloads(0)
  • Abstract views(698)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return