Citation: ZHANG Li-qiang, CUI Lin, WANG Zhi-qiang, DONG Yong. Effects of microwave regeneration of activated carbon on its SO2 adsorption[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 890-896. shu

Effects of microwave regeneration of activated carbon on its SO2 adsorption

  • Corresponding author: DONG Yong, 
  • Received Date: 27 December 2013
    Available Online: 31 March 2014

    Fund Project: 国家自然科学基金(51206097,51176103)。 (51206097,51176103)

  • The microwave regeneration of SO2 loaded activated carbon (AC) and its circulation adsorption characteristics were studied. The effects of microwave regeneration on the pore texture and surface chemistry of AC were analyzed by SEM, low temperature N2 adsorption, elemental analysis and Boehm titration. The results show that microwave irradiation is an effective regeneration method. In the suitable regenerative power, after many circulation adsorption/regeneration, the AC still remains high adsorption capacity. After 17th circulation, the adsorption capacity of AC is still higher than the primitive AC. Hower, there is obviously weight loss for AC during the regeneration because of the reaction between C and H2SO4. After first regeneration, the surface acidic functional groups of the AC almost decompose at high temperature, and the surface basic functional groups increase, so the SO2 adsorption capacity of AC is enhanced. After several adsorption/regeneration circulations, the surface acidic functional groups and basic functional groups remain stable, while the pore structure of AC becomes long and narrow for the activation of regeneration. And the specific surface area and volume of micropore increase, which benefits the SO2 adsorption on AC.
  • 加载中
    1. [1]

      [1] 张守玉, 房倚天, 黄戒介, 颜振明, 张建民, 王洋. 活性焦吸附氧化法脱除烟道气中二氧化硫[J]. 燃料化学学报, 1999, 27(6): 465-468. (ZHANG Shou-yu, FANG Yi-tian, HUANG Jie-jie, YAN Zhen-ming, ZHANG Jian-min, WANG Yang. Eliminating sulfur dioxide from flue gas by adsorption and oxidation on active coke[J]. Journal of Fuel Chemistry and Technology, 1999, 27(6): 465-468.)

    2. [2]

      [2] 赵毅, 韩静, 马天忠. 活性炭纤维负载TiO2同时脱硫脱硝实验研究[J]. 中国电机工程学报, 2009, 29(11): 44-49. (ZHAO Yi, HAN Jing, MA Tian-zhong. Experimental study on simultaneous desulfurization and denitrification by supporting TiO2 on activated carbon fiber[J]. Proceedings of the CSEE, 2009, 29(11): 44-49.)

    3. [3]

      [3] 林金春, 高恒, 温建华, 林秀兰, 陈孝云. 微波加热在活性炭再生中应用研究进展[J]. 科学技术与工程, 2008, 8(23): 1671-1819. (LIN Jin-chun, GAO Heng, WEN Jian-hua, LIN Xiu-lan, CHEN Xiao-yun. Application of microwave heating in regenerating activated carbon[J]. Science Technology and Engineering, 2008, 8(23): 1671-1819.)

    4. [4]

      [4] 孙康, 蒋建春. 活性炭再生方法及工艺设备的研究进展[J]. 生物质化学工程, 2008, 42(6): 55-60. (SUN Kang, JIANG Jian-chun. Research progress of technologies and equipments for regeneration of activated carbon[J]. Biomass Chemical Engineering, 2008, 42(6): 55-60.)

    5. [5]

      [5] FOO Y, HAMEED H. Recent developments in the preparation and regeneration of activated carbons by microwaves[J]. Adv Colloid Interface Sci, 2009, 149(1/2): 19-27.

    6. [6]

      [6] BOUDOU J P, ALONZO A M, TASCON J M. Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure[J]. Carbon, 2000, 38(7): 1021-1029.

    7. [7]

      [7] MENENDEZ J A, MENENDEZ E M, IGLESIAS M J, GARCIA A, PIS J J. Modification of the surface chemistry of active carbons by means of microwave-induced treatments[J]. Carbon, 1999, 37(7): 1115-1121.

    8. [8]

      [8] LIU Q S, ZHENG T, LI N, WANG P, ABULIKEMU G. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue[J]. Appl Surf Sci, 2010, 256(10): 3309-3315.

    9. [9]

      [9] 马双忱, 马宵颖, 郭天祥, 赵毅. 微波改性活性炭用于烟气脱硫脱硝的实验研究[J]. 燃料化学学报, 2010, 38(6): 739-744. (MA Shuang-chen, MA Xiao-ying, GUO Tian-xiang, ZHAO Yi. Experimental study on desulfurization and denitrification from flue gas over modified activated carbon using microwave irradiation[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 739-744.)

    10. [10]

      [10] 江霞, 蒋文举, 朱晓帆. 微波改性活性炭脱硫性能的初步研究[J]. 环境工程, 2003, 21(3): 36-40. (JIANG Xia, JIANG Wen-ju, ZHU Xiao-fan. Preliminary study on SO2 adsorption capacity of activated carbon modified by microwave[J]. Environmental Engineering, 2003, 21(3): 36-40.)

    11. [11]

      [11] 马双忱, 赵毅, 马宵颖, 郭天祥, 刘皓磊, 姚为方. 微波诱导催化还原脱硫脱硝实验研究[J]. 中国电机工程学报, 2006, 26(18): 121-126. (MA Shuang-chen, ZHAO Yi, MA Xiao-ying, GUO Tian-xiang, LIU Hao-lei, YAO Wei-fang. Experimental study on microwave induced catalyzed reduction for desulfurization and denitrification[J]. Proceedings of the CSEE, 2006, 26(18): 121-126.)

    12. [12]

      [12] 张守玉, 朱延钰, 杨之媛, 吕红, 黄戒介, 王洋. 煤质活性焦用于脱除烟道气中的SO2[J]. 燃烧科学与技术, 2002, 8(1): 38-43. (ZHANG Shou-yu, ZHU Ting-yu, YANG Zhi-yuan, LV Hong, HUANG Jie-jie, WANG Yang. Application of active coke derived from coal for SO2-removal from flue gas[J]. Journal of Combustion Science and Technology, 2002, 8(1): 38-43.)

    13. [13]

      [13] 李开喜, 凌立成, 刘 朗, 张碧江, 刘振宇. 热处理改性的活性炭纤维的脱硫活性[J]. 催化学报, 2000, 20(3): 264-268. (LI Kai-xi, LING Li-cheng, LIU Lang, ZHANG Bi-jiang, LIU Zhen-yu. Desulfurization activity of activated carbon fiber modified by heat treatment[J].Chinese Journal of Catalysis, 2000, 20(3): 264-268.)

    14. [14]

      [14] BRADSHAW S M, VAN WYK E J, DE SWARDT J B. Preliminary economic assessment of microwave regeneration of activated carbon for the carbon in pulp process[J]. J Microwave Power E, 1997, 32(3): 131-144.

    15. [15]

      [15] QUAN M, LIU X T, BO L L. CHEN S,ZHAO Y Z. CUI X Y. Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation[J]. Water Res, 2004, 38(20): 4484-4490.

    16. [16]

      [16] 杨斌武, 蒋文举, 朱晓帆, 刘小燕, 何媛媛. 微波辐照法再生载硫活性炭的研究[J]. 化工环保, 2003, 23(3): 125-128. (YANG Bin-bin, JIANG Wen-ju, ZHU Xiao-fan, LIU Xiao-yan, HE Yuan-yuan. Study on regeneration of SO2-loaded activated carbon by microwave irradiation[J]. Environmental Protection of Chemical Industry, 2003, 23(3): 125-128.)

    17. [17]

      [17] 牛志睿, 黄学敏. 吸附SO2饱和活性碳纤维的微波解析性能研究[J]. 延安大学学报(自然科学版), 2008, 27(2): 1098-1103. (NIU Zhi-rui, HUANG Xue-min. On the regeneration of activated carbon fiber with SO2 by microwave radiation[J]. Journal of Yanan University, 2008, 27(2): 1098-1103.)

    18. [18]

      [18] 李兵, 蒋海涛, 张立强, 王志强, 马春元. 微波加热改性活性炭及其对SO2吸附性能的影响[J]. 中国电机工程学报, 2012, 32(29):45-51. (LI Bing, JIANG Hai-tao, ZHANG Li-qiang, WANG Zhi-qiang, MA Chun-yuan. Modification of activated carbon by microwave heating and its effects on SO2 adsorption[J]. Proceedings of the CSEE, 2012, 32(29): 45-51.)

    19. [19]

      [19] 张立强, 蒋海涛, 马春元, 董勇. 烟气脱硫活性炭微波再生特性的实验研究[J]. 燃料化学学报, 2012, 40(11): 1366-1371. (ZHANG Li-qiang, JIANG Hai-tao, MA Chun-yuan, DONG Yong. Microwave regeneration characteristics of activated carbon for flue gas desulphurization[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1366-1371.)

    20. [20]

      [20] 潘志铭. 微波加热中的温度检测[J]. 深圳大学学报: 理工版, 2002, 19(2): 81-84. (PAN Zhi-ming. Temperature measurement in the application of microwave heating[J]. Journal of Shenzhen University: Science & Engineering, 2002, 19(2): 81-84.)

    21. [21]

      [21] DAVINI P. Adsorption and desorption of SO2 on active carbon. The effect of surface basic groups[J]. Carbon, 1990, 28(4): 565-571.

    22. [22]

      [22] RAYMUNDO-PONERO E, AZORDA-AMOROS D, DE LECEA C, LINARES-SOLANO A. Factors controlling the SO2 removel by porous carbons: Relevance of SO2 oxidation step[J]. Carbon, 2000, 38(3): 335-344.

    23. [23]

      [23] 张永奇, 房倚天, 黄戒介, 王洋. 活性焦孔结构及表面性质对脱除烟气中SO2的影响[J]. 燃烧科学与技术, 2004, 10(2): 160-164. (ZHANG Yong-qi, FANG Yi-tian, HUANG Jie-jie, WANG Yang. Effects of micropore structure and surface properties on the SO2 removal in flue gas by active coke[J]. Journal of Combustion Science and Technology, 2004, 10(2): 160-164.)

    24. [24]

      [24] 单晓梅, 张文辉, 杜铭华, 朱书全. 湿氧化和热处理对煤基活性炭吸附SO2的影响[J]. 煤炭学报, 2004, 28(2): 208-212. (SHAN Xiao-mei, ZHANG Wen-hui, DU Ming-hua, ZHU Shu-quan. Effect of wet oxidation and heat-treatment on the SO2 adsorption capacity for coal-based activated carbon[J]. Journal of China Coal Society, 2004, 28(2): 208-212.)

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    6. [6]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    7. [7]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    8. [8]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    9. [9]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    15. [15]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    16. [16]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

Metrics
  • PDF Downloads(0)
  • Abstract views(1000)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return