Citation: ZUO Chen-sheng, Zhou Si-yu, SUN Cheng-zhi, WANG Xing-zhi, LIU Dao-sheng, SEO Hwi-min, PARK Yong-ki, GUI Jian-zhou, LIU Dan. Preparation and application of magnesium-based CO2 sorbent for temperature swing absorption I.Na/Mg mol ratio[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 884-889. shu

Preparation and application of magnesium-based CO2 sorbent for temperature swing absorption I.Na/Mg mol ratio

  • Corresponding author: GUI Jian-zhou,  LIU Dan, 
  • Received Date: 16 December 2013
    Available Online: 21 March 2014

    Fund Project: 国家自然科学基金(21103077) (21103077)教育部新世纪优秀人才支持计划(NCET-11-1011) (NCET-11-1011)韩国教育科技部KCRC2020项目(2012M1A8A1912543) (2012M1A8A1912543)天津市应用基础与前沿技术研究计划(13JCYBJC41600) (13JCYBJC41600)辽宁省自然科学基金(201202123) (201202123)辽宁省教育厅(L2012128)。 (L2012128)

  • A series of magnesium-based CO2 absorbents with different Na/Mg molar ratios were prepared by precipitation method with Mg(NO3)2 and Na2CO3 as raw materials, and characterized by various methods (including XRD, SEM-EDS and DTG) to study the compositions, morphology and decomposition temperature and so on. The CO2 absorption performance was evaluated by temperature swing absorption-desorption dynamic cyclic tests to check the impact of Na/Mg molar ratio. It can be seen that optimum molecular ratio of Na to Mg is 8.15, and the sorbents is homogeneous with lower decomposition temperature caused by small particles of the sample, and initial CO2 adsorption capacity can reach 9.584%. Good recycling capability can be obtained as well. Compared with the initial absorption capacity, there was only 4.2% decrease after 20 recycles.
  • 加载中
    1. [1]

      [1] IPCC. Intergovernmental panel on climate change. Geneva: World Meteorological Organization, 2009.

    2. [2]

      [2] SONG C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal Today, 2006, 115(1): 2-32.

    3. [3]

      [3] Working Group III of the Intergovernmental Panel on Climate Change (IPCC). IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2007: 15-40.

    4. [4]

      [4] 占鑫星, 刘峙嵘. 二氧化碳吸附剂的研究进展[J]. 湿法冶金, 2012, 31(3): 133-137. (ZHAN Xin-xing, LIU Zhi-rong. Research progress of adsorbents for carbon dioxide[J]. Hydrometallurgy of China, 2012, 31(3): 133-137.)

    5. [5]

      [5] HOUGHTON J T, DING Y, GRIGGS D J, NOGUER M. Climate Change 2001: The science of climate change[M]. Cambridge: Cambridge University Press, 2002: 28-47.

    6. [6]

      [6] MARKEWITZ P, KUCKSHINRICHS W, LEITNER W, LINSSEN J, ZAPP P, BONGARTZ R, SCHREIBER A, MVLLER T E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2[J]. Energy Environ Sci, 2012, 5(6): 7281-7305.

    7. [7]

      [7] 韩东升, 任吉萍, 吴干学, 郭家秀, 尹华强. 碳捕获与封存技术综述[J]. 四川化工, 2012, (2): 17-21. (HAN Dong-sheng, REN Ji-ping, WU Gan-xue, GUO Jia-xiu, YIN Hua-qiang. Overview of carbon capture and storage technology[J]. Sichuan Chemical Industry, 2012, (2): 17-21.)

    8. [8]

      [8] 巢清尘, 陈文颖. 碳捕获和存储技术综述及对我国的影响[J]. 地球科学进展, 2006, 21(3): 291-298. (CHAO Qing-chen, CHEN Wen-yin. The summary of carbon capture and storage technology and its impact on China[J]. Advances in Earth Sciences, 2006, 21(3): 291-298.)

    9. [9]

      [9] METZ B, DAVIDSON O, DE CONINCK H C, LOOS M, MEYER L A. IPCC special report on carbon dioxide capture and storage: Prepared by working group III of the intergovernmental panel on climate change[M]. UK: Cambridge University Press, 2005: 378-456.

    10. [10]

      [10] 高蓝宇. CO2吸附和输送技术研究. 浙江: 浙江大学, 2011: 35-38. (GAO Lan-yu. Researeh on CO2 adsorption and transportation technology. Zhejiang: Zhejiang University, 2011: 35-38.)

    11. [11]

      [11] LEE S C, CHAE H J, LEE S J, CHOI B Y, YI C K, LEE J B, RYU C K, KIM J C. Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures[J]. Environ Sci Technol, 2008, 42(8): 2736-2741.

    12. [12]

      [12] LI L, ZHANG B S, WANG F, ZHAO N, XIAO F K, WEI W, SUN Y H. Study of the novel KMgAl sorbents for CO2 capture[J]. Energy Fuels, 2013, 27(9): 5388-5396.

    13. [13]

      [13] XIAO G K, SINGH R, CHAFFEE A, WEBLEY P. Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures[J]. Int J Greenh Gas Con, 2011, 5(4): 634-639.

    14. [14]

      [14] LI L, LI Y, WEN X, WANG F, ZHAO N, XIAO F K, WEI W, SUN Y H. CO2 capture over K2CO3/MgO/Al2O3 dry sorbent in a fluidized bed[J]. Energy Fuels, 2011, 25(8): 3835-3842.

    15. [15]

      [15] HU Y H. Advances in CO2 conversion and utilization[M]. Washington, DC: American Chemical Society, 2010.

    16. [16]

      [16] SEGGIANI M, PUCCINI M, VITOLO S. High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects[J]. Int J Greenh Gas Con, 2011, 5(4): 741-748.

    17. [17]

      [17] WANG S T, AN C H, ZHANG Q H. Syntheses and structures of lithium zirconates for high-temperature CO2 absorption[J]. J Mater Chem, 2013, 11: 3540-3550.

    18. [18]

      [18] HAN K K, ZHOU Y, CHUN Y, ZHU J H. Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature[J]. J Hazard Mater, 2012, 203: 341-347.

    19. [19]

      [19] BHAGIYALAKSHMI M, LEE J Y, JANG H T. Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption[J]. Int J Greenh Gas Con, 2010, 4(1): 51-56.

    20. [20]

      [20] RUMINSKI A M, JEON K J, URBAN J J. Size-dependent CO2 capture in chemically synthesized magnesium oxide nanocrystals[J]. J Mater Chem, 2011, 21(31): 11486-11491.

    21. [21]

      [21] LEE S C, KIM J C. Dry potassium-based sorbents for CO2 capture[J]. Catal Surv Asia, 2007, 11(4): 171-185.

    22. [22]

      [22] SIRIWARDANE R V, STEVENS JR R W. Novel regenerable magnesium hydroxide sorbents for CO2 capture at warm gas temperatures[J]. Ind Eng Chem Res, 2008, 48(4): 2135-2141.

    23. [23]

      [23] FISHER J C, SIRIWARDANE R V, STEVENS JR R W. Process for CO2 capture from high-pressure and moderate-temperature gas streams[J]. Ind Eng Chem Res, 2012, 51(14): 5273-5281.

    24. [24]

      [24] PABST A. The crystallography and structure of eitelite, Na2Mg(CO3)2[J]. Am Mineral, 1973, 58(3/4): 211-217.

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    17. [17]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(0)
  • Abstract views(388)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return