Citation: XU Xiang-yang, GU Cheng, WANG Hong, ZHANG Yuan-yuan, KE Yan, ZHANG Cheng-le, WANG Ming-jin, SONG Bao-hua, LI Cui-qing. Catalytic performance of Co/Hβ in N2O decomposition[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 877-883. shu

Catalytic performance of Co/Hβ in N2O decomposition

  • Corresponding author: WANG Hong,  SONG Bao-hua, 
  • Received Date: 27 January 2014
    Available Online: 14 April 2014

    Fund Project: 国家自然科学基金(21342009) (21342009)北京市属高等学校人才强教计划(PHR20110517) (PHR20110517)国家级大学生创新创业训练计划(201310017004) (201310017004)北京市本科生科学研究计划(2013J00032)。 (2013J00032)

  • The catalyst of cobalt oxide supported on Hβ zeolite (Co/Hβ) was prepared by impregnation method and characterized by XRD, H2-TPR, NH3-TPD, and SEM. The effects of calcination temperature and cobalt loading on the catalytic performance of Co/Hβ in N2O decomposition were investigated. The results showed that cobalt species are present mainly in the form of Co3O4 spinel oxide. The acidity, acid amount and redox property of the Co/Hβ catalyst were significantly affected by the calcination temperature; the Co-Al-O species that is difficult to reduce by hydrogen is formed at a calcination temperature over 700℃. The catalytic activity of the Co/Hβ catalyst was affected by the calcintion temperature and cobalt loading. The Co/Hβ catalyst calcined at 600℃ and with a cobalt loading of 10%~15% exhibits excellent catalytic activity in N2O decomposition; the temperatures t10, t50 and t95 for N2O decomposition are 325~329℃, 364~367℃, and 406~408℃, respectively.
  • 加载中
    1. [1]

      [1] MANIAK G, STELMACHOWSKI P, KOTARBA A, SOJKA Z, RICO-PéREZ V, BUENO-LóPEZ A. Rationales for the selection of the best precursor for potassium doping of cobalt spinel based deN2O catalyst[J]. Appl Catal B: Environ, 2013, 136-137: 302-307.

    2. [2]

      [2] 王虹, 王军利, 李翠清, 宋永吉, 迟姚玲, 王焘. ACo2O4/HZSM-5催化剂上N2O的直接分解[J]. 物理化学学报, 2010, 26(10): 2739-2744.

    3. [3]

      (WANG Hong, WANG Jun-li, LI Cui-qing, SONG Yong-ji, CHI Yao-lin, WANG Tao. Decomposition of N2O on ACo2O4/HZSM-5 Catalysts[J]. Acta Physico-Chimica Sinica, 2010, 26(10): 2739-2744.)

    4. [4]

      [3] 王焘, 王虹, 李翠清, 宋永吉, 丁福臣. 稀土修饰的Co/Hβ催化剂催化分解N2O[J]. 环境化学, 2012, 31(2): 157-161.

    5. [5]

      (WANG Tao, WANG Hong, LI Cui-qing, SONG Yong-ji, DING Fun-chen. N2O decomposition over Co/Hβ catalysts modified with rare-earth[J]. Environmental Chemistry, 2012, 31(2): 157-161.)

    6. [6]

      [4] 董长青, 胡笑颖, 杨勇平, 张俊姣, 张汉飞, 董智慧, 李永胜. 生物质气再燃减少流化床N2O排放的实验研究[J]. 燃料化学学报, 2010, 38(2): 236-241.

    7. [7]

      (DONG Chang-qing, HU Xiao-yin, YANG Yong-ping, ZHANG Jun-jiao, ZHANG Han-fei, DONG Zhi-hui, LI Yong-sheng. Experimental research on biomass derived gas reburning for N2O reduction in a fluidized bed combustor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(2): 236-241.)

    8. [8]

      [5] ZHANG X Y, SHEN Q, HE C, WANG Y F, CHENG J, HAO Z P. CoMOR zeolite catalyst prepared by buffered ion exchange for effective decomposition of nitrous oxide[J]. J Hazardous Mater, 2011, 192(3): 1756-1765.

    9. [9]

      [6] 杨波, 沈岳松, 祝社民. 催化分解N2O催化剂的研究新进展[J]. 环境工程, 2012, 30(2): 114-119.

    10. [10]

      (YANG Bo, SHEN Yue-song, ZHU She-min. New progress in research on catalysts for N2O decomposition[J]. Environmental Engineering, 2012, 30(2): 114-119.)

    11. [11]

      [7] XUE L, ZHANG C B, HE H, TERAOKA Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst[J]. Appl Catal B: Environ, 2007, 75(3/4): 167-174.

    12. [12]

      [8] ASANO K, OHNISHI C, IWAMOTO S, SHIOYA Y, INOUE M. Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J]. Appl Catal B: Environ, 2008, 78(3/4): 242-249.

    13. [13]

      [9] AMROUSSE R, TSUTSUMI A, BACHAR A, LAHCENE D. N2O catalytic decomposition over nano-sized particles of Co-substituted Fe3O4 substrates[J]. Appl Catal A: Gen, 2013, 450: 253-260.

    14. [14]

      [10] 窦喆, 张海杰, 潘燕飞, 徐秀峰. N2O在钾改性Cu-Co尖晶石型复合氧化物上的催化分解[J]. 燃料化学学报, 2014, 42(2): 238-245.

    15. [15]

      (DOU Zhe, ZHANG Hai-jie, PAN Yan-fei, XU Xiu-feng. Catalytic decomposition of N2O over potassium modified Cu-Co spinel oxides[J]. Journal of Fuel Chemistry and Technology, 2014, 42(2): 238-245.)

    16. [16]

      [11] ZHANG X Y, SHEN Q, HE C, MA C Y, CHENG J, LIU Z M, HAO Z P. Decomposition of nitrous oxide over Co-zeolite catalysts: Role of zeolite structure and active site[J]. Catal Sci Technol, 2012, 2(6): 1249-1258.

    17. [17]

      [12] LIU N, ZHANG R D, CHEN B H, LI Y P, LI Y X. Comparative study on the direct decomposition of nitrous oxide over M (Fe, Co, Cu)-BEA zeolites[J]. J Catal, 2012, 294: 99-112.

    18. [18]

      [13] 邵建军, 张平, 唐幸福, 张保才, 宋巍, 徐奕德, 申文杰. 制备方法及焙烧温度对Co3O4/CeO2催化剂上CO低温氧化反应的影响[J]. 催化学报, 2007, 28(2): 163-169.

    19. [19]

      (SHAO Jian-jun, ZHANG Ping, TANG Xing-fu, ZHANG Bao-cai, SONG Wei, XU Yi-de, SHEN Wen-jie. Effect of preparation method and calcianation temperature on low-temperature CO oxidation over Co3O4/CeO2 catalyst[J]. Chinese Journal of Catalysis, 2007, 28(2): 163-169.)

    20. [20]

      [14] DE LA OS A R, DE LUCAS A, DIAZ-MAROTO J, ROMERO A, VALVERDE J L, SANCHEZ P. FTS fuels production over different Co/SiC catalysts[J]. Catal Today, 2012, 187(1): 173-182.

    21. [21]

      [15] TAVASOLI A, ABBASLOU R M M, TREPANIER M, DALAI A K. Fischer-Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor[J]. Appl Catal A: Gen, 2008, 345(2): 134-142.

    22. [22]

      [16] WANG S R, YIN Q Q, GUO J F, RU B, ZHU L J. Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts[J]. Fuel, 2013, 108: 597-603.

    23. [23]

      [17] Tavasoli A, ABBASLOU R M M, DALAI A K. Deactivation behavior of ruthenium promoted Co/γ-Al2O3 catalysts in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2008, 346(1/2): 58-64.

    24. [24]

      [18] GONZALEZ O, PEREZ H, NAVARRO P, ALMEIDA L.C, PACHECO J.G, MONTES M. Use of different mesostructured materials based on silica as cobalt supports for the Fischer-Tropsch synthesis[J]. Catal Today, 2009, 148(1/2): 140-147.

    25. [25]

      [19] LI H L, WANG S G, LING F X, LI J L. Studies on MCM-48 supported cobalt catalyst for Fischer-Tropsch synthesis[J]. J Mol Catal A: Chem, 2006, 244(1/2): 33-40.

    26. [26]

      [20] XIE R Y, LI D B, HOU B, WANG J G, JIA L T, SUN Y H. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis s[J]. Catal Commun, 2011, 12(7): 589-592.

    27. [27]

      [21] 赵红霞, 陈建刚, 孙予罕. 载体焙烧温度对Co/ZrO2催化剂催化F-T合成反应的影响[J]. 催化学报, 2003, 24(12): 933-936.

    28. [28]

      (ZHAO Hong-xia, CHEN Jian-gang, SUN Yu-han. Effect of calcination temperature of support on catalytic performance of Co/ZrO2 for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2003, 24(12): 933-936.)

    29. [29]

      [22] ZHANG X Y, SHEN Q, HE C, MA C Y, LIU Z T, HAO Z P. Promotional effects and mechanism of second cations on activity and stability of Co-MOR for nitrous oxide decomposition: UV-Vis spectroscopy and EXAFS analysis[J]. Chem Eng J, 2013, 226: 95-104.

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    3. [3]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    10. [10]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    11. [11]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    12. [12]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    15. [15]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    16. [16]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    17. [17]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    18. [18]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    19. [19]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(0)
  • Abstract views(822)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return