Citation: HUA De-run, CHEN Sheng-li, ZHOU Zheng, CHEN Ai-cheng, LIU Hong-bo, HUANG Qing, LU Xin-ning. Effect of support on catalytic performance for metathesis of butene to propene[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 865-869. shu

Effect of support on catalytic performance for metathesis of butene to propene

  • Corresponding author: CHEN Sheng-li, 
  • Received Date: 27 November 2013
    Available Online: 11 March 2014

  • The catalysts with SBA-15, MCM-48, SiO2, and MTS-9 as supports were synthesized with 8% WO3, and their catalytic performance for metathesis of butene to propene were carried out. The conversion of butene is 30%~37% on the catalysts with SBA-15, MCM-48, and SiO2 as supports, and that of butene is 37%~42% on WO3/MTS-9 catalyst. The catalyst characterization results show that the catalytic activities depend on the acidic numbers of catalysts prepared and the distribution of tungstens on the supports used. As a result, the performance of 8% WO3/MTS-9 catalyst for the titled reaction is best.
  • 加载中
    1. [1]

      [1] LIPPARD S J, GRUBBS R H. The olefin metathesis reaction[M]. Wiley, 1978.

    2. [2]

      [2] ELEUTERIO H S. Polymerization of cyclic olefins: US, 3074918. 1963-01-22.

    3. [3]

      [3] VAN SCHALKWYK C, VOSLOO H C M, BOTHA J M. An investigation into the activity of the in situ ruthenium(III). Chloride catalytic system for the metathesis of 1-octene[J]. J Mol Catal A: Chem, 2002, 190(1/2): 185-195.

    4. [4]

      [4] WANG Y, CHEN Q, YANG W, XIE Z, XU W, HUANG D. Effect of support nature on WO3/SiO2 structure and butene-1 metathesis[J]. Appl Catal A: Gen, 2003, 250(1): 25-37.

    5. [5]

      [5] TOPKA P, BALCAR H, RATHOUSKY J, ZILKOVA N, VERPOORT F, CEJKA J. Metathesis of 1-octene over MoO3 supported on mesoporous molecular sieves: The influence of the support architecture[J]. Microporous Mesoporous Mater, 2006, 96(1/3): 44-54.

    6. [6]

      [6] SPAMER A, DUBE T I, MOODLEY D J, DUBE T, REYNHARDT J, BOTHA J M, VOSLOO H C M. Application of a WO3/SiO2 catalyst in an industrial environment: Part II[J]. Appl Catal A: Gen, 2003, 255(2): 133-142.

    7. [7]

      [7] HUA D, CHEN S, YUAN G, WANG Y, ZHAO Q, WANG X, FU B. Metathesis of butene to propene and pentene over WO3/MTS-9[J]. Microporous Mesoporous Mater, 2011,143(2/3): 320-325.

    8. [8]

      [8] MITRA B, GAO X, WACHS I E, HIRT A M, DEO G. Characterization of supported rhenium oxide catalysts: Effect of loading, support and additives[J]. Phys Chem Chem Phys, 2001, 3(6): 1144-1152.

    9. [9]

      [9] BASRUR A G, PATWARDHAN S R, VYAS S N. Propene metathesis over silica-supported tungsten oxide catalyst-catalyst induction mechanism[J]. J Catal, 1991, 127(1): 86-95.

    10. [10]

      [10] VERPOORT F, BOSSUYT A R, VERDONCK L. Olefin metathesis catalyst. Part II. Activation and characteristics of a molecular tungsten unit on silica[J]. J Mol Catal A: Chem, 1995, 95(1): 75-82.

    11. [11]

      [11] LIU H, HUANG S, ZHANG L, LIU S, XIN W, XU L. The preparation of active WO3 catalysts for metathesis between ethene and 2-butene under moist atmosphere[J]. Catal Commun, 2009, 10(5): 544-548.

    12. [12]

      [12] HUANG S, LIU S, ZHU Q, ZHU X, XIN W, LIU H, FENG Z, LI C, XIE S, WANG Q, XU L. The effect of calcination time on the activity of WO3-Al2O3-HY catalysts for the metathesis reaction between ethene and 2-butene[J]. Appl Catal A: Gen, 2007, 323: 94-103.

    13. [13]

      [13] HUANG S, LIU S, XIN W, BAI J, XIE S, WANG Q, XU L. Metathesis of ethene and 2-butene to propene on W/Al2O3-HY catalysts with different HY contents[J]. J Mol Catal A: Chem, 2005, 226(1): 61-68.

    14. [14]

      [14] BALCAR H, MISHRA D, MARCEAU E, CARRIER X, ZILKOVA N, BASTI Z. Molybdenum oxide catalysts for metathesis of higher 1-alkenes via supporting MoO2(acetylacetonate)2 and MoO2(glycolate)2 on SBA-15 mesoporous molecular sieves[J]. Appl Catal A: Gen, 2009, 359(1/2): 129-135.

    15. [15]

      [15] HAMTIL R, ZILKOVA N, BALCAR H, CEJKA J. Rhenium oxide supported on organized mesoporous alumina-A highly active and versatile catalyst for alkene, diene, and cycloalkene metathesis[J]. Appl Catal A: Gen, 2006, 302(2): 193-200.

    16. [16]

      [16] TAKASHI O, TOORU O, TSUNEHIRO T, TAKASHI Y, MAKOTO O. A new heterogeneous olefin metathesis catalyst composed of rhenium oxide and mesoporous alumina[J]. Microporous Mesoporous Mater, 2004, 74(1/3): 93-103.

    17. [17]

      [17] OOKOSHI T, ONAKA A M. A remarkable Mo catalyst for olefin metathesis hexagonal mesoporous silica-supported molybdenum oxide (MoO3/HMS)[J]. Chem Commun, 1998, (21): 2399-2400.

    18. [18]

      [18] MOODLEY D J, VAN SCHALKWYK C, SPAMER A, BOTHA J M, DATYE A K. Coke formation on WO3/SiO2 metathesis catalysts[J]. Appl Catal A: Gen, 2007, 318: 155-159.

    19. [19]

      [19] VAN SCHALKWYK C, SPAMER A, MOODLEY D J, DUBE T, REYNHARDT J, BOTHA J M, VOSLOO H CM. Factors that could influence the activity of a WO3/SiO2 catalyst: Part III[J]. Appl Catal A: Gen, 2003, 255(2): 143-152.

    20. [20]

      [20] DEBECKER D P, HAUWAERT D, STOYANOVA M, BARKSCHAT A, RODEMERCK U, GAIGNEAUX E M. Opposite effect of Al on the performances of MoO3/SiO2-Al2O3 catalysts in the metathesis and in the partial oxidation of propene[J]. Appl Catal A: Gen, 2011, 391(1/2): 75-78.

    21. [21]

      [21] SAYARI A. Novel synthesis of high-quality MCM-48 Silica[J]. J Am Chem Soc, 2000, 122(27): 6504-6505.

    22. [22]

      [22] ZHAO D, SUN J, LI Q, STUCKY G D. Morphological control of highly ordered mesoporous silica SBA-15[J]. Chem Mater, 2000, 12(2): 275-279.

    23. [23]

      [23] MIYAZAWA K, INAGAKI S. Control of the microporosity within the pore walls of ordered mesoporous silica SBA-15[J]. Chem Commun, 2000, (21): 2121-2122.

    24. [24]

      [24] CARLO L, SILVIA B, ADRIANO Z, GILBERTO A, GIANLUIGI M, GUIDO S. Ti location in the MFI framework of Ti-Silicalite-1: A neutron powder diffraction study[J]. J Am Chem Soc, 2001, 123(10): 2204-2212.

    25. [25]

      [25] EIMER G A, DíAZ I, SASTRE E, CASUSCELLI S G, CRIVELLO M E, HERRERO E R, PEREZ-PARIENTE J. Mesoporous titanosilicates synthesized from TS-1 precursors with enhanced catalytic activity in the α-pinene selective oxidation[J]. Appl Catal A: Gen, 2008, 343(1/2): 77-86.

    26. [26]

      [26] HARMSE L, SCHALKWYK C, STEEN E. On the product formation in 1-butene metathesis over supported tungsten catalysts[J]. Catal Lett, 2010, 137(3/4): 123-131.

    27. [27]

      [27] DU S K, MARLENE OSTROMECKI, WACHS I E. Surface structures of supported tungsten oxide catalysts under dehydrated conditions[J]. J Mol Catal A: Chem, 1996, 106(1/2): 93-102.

    28. [28]

      [28] RAMíREZ J, GUTIÉRREZ-ALEJANDRE A. Characterization and hydrodesulfurization activity of W-based catalysts supported on Al2O3-TiO2 mixed oxides[J]. J Catal, 1997, 170(1): 108-122.

    29. [29]

      [29] BALCAR H, CEJKA A J. Mesoprous molecular sieves as supports for metathesis catalysts[J]. Metathesis Chem, 2007, 243: 151-166.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    8. [8]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    19. [19]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    20. [20]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

Metrics
  • PDF Downloads(0)
  • Abstract views(444)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return