Citation: ZHANG Jun-tao, QIU Li-min, LIANG Sheng-rong, SU Tong, DING Li-qin. Synthesis of pillared MCM-36 zeolites with tetramethylammonium silicate as pillaring reagent[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 858-864. shu

Synthesis of pillared MCM-36 zeolites with tetramethylammonium silicate as pillaring reagent

  • Corresponding author: ZHANG Jun-tao, 
  • Received Date: 3 January 2014
    Available Online: 6 April 2014

    Fund Project: 陕西省教育厅科研计划项目(11JK0605)。 (11JK0605)

  • Pillared MCM-36 zeolites of MWW type were hydrothermally synthesized by pillaring swollen layered MCM-22P precursor, with tetramethylammonium silicate as the pillaring reagent; the synthesized zeolites were characterized by different physico-chemical techniques such as XRD, N2 adsorption, TEM, 27Al-MAS, NMR and NH3-TPD. The results showed that the swollen MCM-22P without drying was successfully pillared in an aqueous solution system; the MCM-36 zeolites with an uniform interlayer distance were then readily obtained. The suitable synthesis conditions for MCM-36 are 80℃ for 24 h for the interlayer swelling of MCM-22P at high pH value (13.5), and then at 100℃ for 24 h for the formation of the intercalating pillars. The MCM-36 zeolites obtained exhibit a typical MWW topology structure, with a composite pore system of both micropores in the crystalline layers and mesopores in the interlayer space, and a large specific surface area (especially external specific surface area). Compared with HMCM-22, the HMCM-36 zeolites show lower acid amount; however, a larger amount of structurally accessible Brnsted acid sites located in the interlayer space of MCM-36 zeolites are exposed due to the formation of mesopores in the interlayer space, which should be favorable to the reaction involving bulky molecules.
  • 加载中
    1. [1]

      [1] LIU G Q, JIANG J G, YANG B T, FANG X Q, XU H, PENG H G, XU L, LIU Y M, WU P. Hydrothermal synthesis of MWW-type stannosilicate and its post-structural transformation to MCM-56 analogue[J]. Micropor Mesopor Mater, 2013, 165(1): 210-218.

    2. [2]

      [2] 张君涛, 郝娜娜, 王妮. ZSM-5/MCM-41复合分子筛的合成与表征[J]. 燃料化学学报, 2013, 41(10): 1267-1273. (ZHANG Jun-tao, HAO Na-na, WANG Ni. Synthesis and characterization of ZSM-5/MCM-41 composite molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2013, 41(10): 1267-1273.)

    3. [3]

      [3] CHLUBNÁ P, ROTH W J, ZUKAL A, KUBU M, PAVLATOVÁ J. Pillared MWW zeolites MCM-36 prepared by swelling MCM-22P in concentrated surfactant solutions[J]. Catal Today, 2012, 179(1): 35-42.

    4. [4]

      [4] LEONOWICZ M E, LAWTON J A, LAWTON S L, RUBIN M K. MCM-22-A molecular sieve with two independent multidimension channel systems[J]. Science, 1994, 264(5167): 1910-1913.

    5. [5]

      [5] CORMA A, CORELL C, PÉREZ-PARIENTE J. Synthesis and characterization of the MCM-22 zeolite[J]. Zeolites, 1995, 15(1): 2-8.

    6. [6]

      [6] ROTH W J, DORSET D L, KENNEDY G J. Discovery of new MWW family zeolite EMM-10: Identification of EMM-10P as the missing MWW precursor with disordered layers[J]. Micropor Mesopor Mater, 2011, 142(1): 168-177.

    7. [7]

      [7] ROTH W J, DORSET D L. Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks[J]. Micropor Mesopor Mater, 2011, 142(1): 32-36.

    8. [8]

      [8] ROTH W J, KRESGE C T, VARTULI J C, LEONOWICZ M E, FUNG A S, MCCULLEN S B. MCM-36: The first pillared molecular sieve with zeolite properties[J]. Stud Surf Sci Catal, 1995, 94: 301-308.

    9. [9]

      [9] ROTH W J. Synthesis of delaminated and pillared zeolitic materials[J]. Stud Surf Sci Catal, 2007, 168: 221-239.

    10. [10]

      [10] MAHESHWARI S, JORDAN E, KUMAR S, BATES F S, LEE PENN R, SHANTZ D F, TSAPATSIS M. Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor[J]. J Am Chem Soc, 2008, 130(4): 1507-1516.

    11. [11]

      [11] CORMA A, FORNES V, MARTINEZ-TRIGUERO J, PERGHER S B. Delaminated zeolites: Combining the benefits of zeolites and mesoporous materials for catalytic uses[J]. J Catal, 1999, 186(1): 57-63.

    12. [12]

      [12] HE Y J, NIVARTHY G S, EDER F, SESHAN K, LERCHER J A. Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36[J]. Micropor Mesopor Mater, 1998, 25(1/3): 207-224.

    13. [13]

      [13] ZHANG Y, XING H J, YANG P P, WU P, JIA M J, SUN J Z, WU T H. Alkylation of benzene with propylene over mcm-36: A comparative study with mcm-22 zeolite synthesized from the same precursors[J]. React Kinet Catal Lett, 2007, 90(1): 45-52.

    14. [14]

      [14] 张祚望, 张钰, 王振旅, 邢海军, 贾明君, 吴通好, 张文祥. H-MCM-22和H-MCM-36分子筛对苯与异丙醇烷基化反应的催化性能[J]. 催化学报, 2008, 29(10): 1015-1020. (ZHANG Zuo-wang, ZHANG Yu, WANG Zhen-lü, XING Hai-jun, JIA Ming-jun, WU Tong-hao, ZHANG Wen-xiang. Catalytic performance of H-MCM-22 and H-MCM-36 zeolites for alkylation of benzene with isopropanol[J]. Chinese Journal of Catalysis, 2008, 29(10): 1015-1020.)

    15. [15]

      [15] LACARRIERE A, LUCK F, SWIERCZYNSKIA D, FAJULA F, HULEA V. Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity[J]. Appl Catal A: Gen, 2011, 402(1/2): 208-217.

    16. [16]

      [16] ROTH W J, VARTULI J C. Preparation of exfoliated zeolites from layered precursors: The role of pH and nature of intercalating media[J]. Stud Surf Sci Catal, 2002, 141: 273-279.

    17. [17]

      [17] BARTH J-O, JENTYS A, KORNATOWSKI J, LERCHER J A. Control of acid-base properties of new nanocomposite derivatives of MCM-36 by mixed oxide pillaring[J]. Chem Mater, 2004, 16(4): 724-730.

    18. [18]

      [18] 王保玉, 吴建梅, 李牛, 袁忠勇, 项寿鹤. 超声作用下MCM-36分子筛的快速合成[J]. 催化学报, 2007, 28(5): 398-400. (WANG Bao-yu, WU Jian-mei, LI Niu, YUAN Zhong-yong, XIANG Shou-he. Rapid synthesis of MCM-36 zeolite under ultrasonic treatment[J]. Chinese Journal of Catalysis, 2007, 28(5): 398-400.)

    19. [19]

      [19] BRNDLE M, SAUER J. Acidity differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites[J]. J Am Chem Soc, 1998, 120(7): 1556-1570.

    20. [20]

      [20] 徐如人, 庞文琴, 于吉红. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. (XU Ru-ren, PANG Wen-qin, YU Ji-hong. Zeolites and porous materials[M]. Beijing: Science Press, 2004.)

    21. [21]

      [21] KIM S Y, BAN H J, AHN W S. Ti-MCM-36: A new mesoporous epoxidation catalyst[J]. Catal Lett, 2007, 113(3/4): 160-164.

    22. [22]

      [22] MAHESHWARI S, MARTINEZ C, PORTILLA M T, LLOPIS F J, CORMA A, TSAPATSIS M. Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36[J]. J Catal, 2010, 272(2): 298-308.

    23. [23]

      [23] 凌云, 郑玉婷, 刘月明, 王振东, 吴海虹, 吴鹏. 微波辅助晶化法合成MCM-22分子筛的研究[J]. 化学学报, 2010, 68(20): 2035-2040. (LING Yun, ZHENG Yu-ting, LIU Yue-ming, WANG Zhen-dong, WU Hai-hong, WU Peng. A study on microwave-assisted synthesis of mcm-22 zeolite[J]. Acta Chimica Sinica, 2010, 68(20): 2035-2040.)

    24. [24]

      [24] CORMA A, CORELL C, PÉREZ-PARIETE J, GUIL J M, GUIL-LÓPEZ R, NICOLOPOULOS S, GONZALEZ CALBET J, VALLET-REGI M. Adsorption and catalytic properties of MCM-22: The influence of zeolite structure[J]. Zeolites, 1996, 16(1): 7-14.

    25. [25]

      [25] DEGNAN Jr T F, MORRIS SMITH C, VENKAT C R. Alkylation of aromatics with ethylene and propylene: Recent developments in commercial processes[J]. Appl Catal A: Gen, 2001, 221(1/2): 283-294.

    26. [26]

      [26] CEJKA J, KREJCÍ A, ŽILKOVÁ N, KOTRLA J, ERNST S, WEBER A. Activity and selectivity of zeolites MCM-22 and MCM-58 in the alkylation of toluene with propylene[J]. Micropor Mesopor Mater, 2002, 53(1/3): 121-133.

  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    5. [5]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    6. [6]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    10. [10]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    13. [13]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    14. [14]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    15. [15]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    18. [18]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

Metrics
  • PDF Downloads(0)
  • Abstract views(381)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return