Citation: A. O. Neto, J. Nandenha, R. F. B. De Souza, G. S Buzzo, J. C. M. Silva, E. Ü. Spinacé, M. H. M. T. Assumpção. Anodic oxidation of formic acid on PdAuIr/C-Sb2O5·SnO2 electrocatalysts prepared by borohydride reduction[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 851-857. shu

Anodic oxidation of formic acid on PdAuIr/C-Sb2O5·SnO2 electrocatalysts prepared by borohydride reduction

  • Received Date: 6 December 2013
    Available Online: 17 April 2014

  • PdAuIr/C-Sb2O5·SnO2 electrocatalysts with Pd:Au:Ir molar ratios of 90:5:5, 70:20:10 and 50:45:5 were prepared by borohydride reduction method. These electrocatalysts were characterized by EDX, X-ray diffraction, transmission electron microscopy and the catalytic activity toward formic acid electro-oxidation in acid medium investigated by cyclic voltammetry (CV), chroamperometry (CA) and tests on direct formic acid fuel cell (DFAFC) at 100℃. X-ray diffractograms of PdAuIr/C-Sb2O5·SnO2 electrocatalysts showed the presence of Pd fcc phase, Pd-Au fcc alloys, carbon and ATO phases, while Ir phases were not observed. TEM micrographs and histograms indicated that the nanoparticles were not well dispersed on the support and some agglomerates. The cyclic voltammetry and chroamperometry studies showed that PdAuIr/C-Sb2O5·SnO2 (50:45:5) had superior performance toward formic acid electro-oxidation at 25℃ compared to PdAuIr/C-Sb2O5·SnO2 (70:20:10), PdAuIr/C-Sb2O5·SnO2 (90:5:5) and Pd/C-Sb2O5·SnO2 electrocatalysts. The experiments in a single DFAFC also showed that all PdAuIr/C-Sb2O5·SnO2 electrocatalysts exhibited higher performance for formic acid oxidation in comparison with Pd/C-Sb2O5·SnO2 electrocatalysts, however PdAuIr/C-Sb2O5·SnO2 (90:5:5) had superior performance. These results indicated that the addition of Au and Ir to Pd favor the electro-oxidation of formic acid, which could be attributed to the bifunctional mechanism (the presence of ATO, Au and Ir oxides species) associated to the electronic effect (Pd-Au fcc alloys).
  • 加载中
    1. [1]

      [1] MARINSEK M, SALA M, JANCAR B. A study towards superior carbon nanotubes-supported Pd-based catalysts for formic acid electro-oxidation: Preparation, properties and characterization[J]. J Power Sources, 2013, 235: 111-116.

    2. [2]

      [2] NANDENHA J, DE SOUZA R F B, ASSUMPÇÃO M H M T, SPINACÉ E V, NETO A O. Preparation of PdAu/C-Sb2O5·SnO2 electrocatalysts by borohydride reduction process for direct formic acid fuel cell Ionics[J]. Inoics, 2013, 19(9): 1207-1213.

    3. [3]

      [3] FENG L, YAO S, ZHAO X, YAN L, LIU C, XING W. Electrocatalytic properties of Pd/C catalyst for formic acid electrooxidation promoted by europium oxide[J]. J Power Sources, 2012, 197: 38-43.

    4. [4]

      [4] NANDENHA J, DE SOUZA R F B, ASSUMPÇÃO M H M T, SPINACÉ E V, NETO A O. Electro-oxidation of formic acid on PdIr/C-Sb2O5·SnO2 electrocatalysts prepared by borohydride reduction[J]. Int J Electrochem Sci, 2013, 8: 9171-9179.

    5. [5]

      [5] LU L, SHEN L, SHA Y, CHEN T, JIANG G, GE C, TANG Y, CHEN Y, LU T. New insights into enhanced electrocatalytic performance of carbon supported Pd-Cu catalyst for formic acid oxidation[J]. Electrochim Acta, 2012, 85: 187-194.

    6. [6]

      [6] WANG X, TANG Y W, GAO Y, LU T H. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell[J]. J Power Sources, 2008, 175(2): 784-788.

    7. [7]

      [7] ALDEN L R, HAN D K, MATSUMOTO F, ABRUN A D, DISALVO F J. Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: Electrocatalytic oxidation of formic acid[J]. Chem Mater, 2006, 18(23): 5591-5596.

    8. [8]

      [8] ZHOU W J, LEE J Y. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation[J]. Electrochem Commun, 2007, 9(7): 1725-1729.

    9. [9]

      [9] WANG R F, LIAO S J, JI S. High performance Pd-based catalysts for oxidation of formic acid[J]. J Power Sources, 2008, 180(1): 205-208.

    10. [10]

      [10] YANG G, CHEN Y, ZHOU Y, TANG Y, LU T. Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation[J]. Electrochem Commun, 2010, 12(3): 492-495.

    11. [11]

      [11] WANG R, WANG H, FENG H, JI S. Palladium decorated nickel nanoparticles supported on carbon for formic acid oxidation[J]. Int J Electrochem Sci, 2013, 8: 6068-6076.

    12. [12]

      [12] CHIOU Y J, CHEN K Y, LIN H M, LIOU W J, LIOU H W, WU S H, MIKOLAJCZUK A, MAZURKIEWICZ M, MALOLEPSZY A, STOBINSKI L, BORODZINSKI A, KEDZIERZAWSKI P, KURZYDLOWSKI K, CHIEN S H, CHEN W C. Electrocatalytic properties of hybrid palladium gold/multi-walled carbon nanotube materials in fuel cell applications[J]. Phys Status Solidi A, 2011, 208(8): 1778-1782.

    13. [13]

      [13] PAN C, LI Y, MA Y, ZHAO X, ZHANG Q. Platinum-antimony doped tin oxide nanoparticles supported on carbon black as anode catalysts for direct methanol fuel cells[J]. Power Sources, 2011, 196(15): 6228-6231.

    14. [14]

      [14] WU X, SCOTT K. RuO2 supported on Sb-doped SnO2 nanoparticles for polymer electrolyte membrane water electrolysers[J]. Int J Hydrogen Energy, 2011, 36(10): 5806-5810.

    15. [15]

      [15] LIU H, SONG C, ZHANG L, ZHANG J, WANG H, WILKINSON D P. A review of anode catalysis in the direct methanol fuel cel[J]. J Power Sources, 2006, 155(2): 95-110.

    16. [16]

      [16] LUX K W, CAIRNS E J. Lanthanide-platinum intermetallic compounds as anode electrocatalysts for direct ethanol PEM fuel cells: I. Synthesis and characterization of Ln Pt 2 ( Ln=Ce, Pr) nanopowders[J]. J Electrochem Soc, 2006, 153(6): A1132-A1138.

    17. [17]

      [17] DELIME F, LEGER J M, LAMY C. Optimization of platinum dispersion in Pt-PEM electrodes: Application to the electrooxidation of ethanol[J]. J Appl Electrochem, 1998, 28: 27-35.

    18. [18]

      [18] NETO A O, BRANDALISE M, DIAS R R, AYOUB J M S, SILVA A C, PENTEADO J C, LINARDI M, SPINACE EV. The performance of Pt nanoparticles supported on Sb2O5·SnO2, on carbon and on physical mixtures of Sb2O5·SnO2 and carbon for ethanol electro-oxidation[J]. Int J Hydrogen Energy, 2010, 35(17): 9177-9181.

    19. [19]

      [19] AYOUB J M S, DE SOUZA R F B, SILVA J C M, PIASENTIN R M, SPINACÉ E V, SANTOS MC, NETO A O. Ethanol electro-oxidation on PtSn/C-ATO electrocatalysts[J]. Int J Electrochem Sci, 2012, 7: 11351-11362.

    20. [20]

      [20] PIASENTIN R M, SPINACE E V, TUSI M M, NETO A O. Preparation of PdPtSn/C-Sb2O5.SnO2 electrocatalysts by borohydride reduction for ethanol electro-oxidation in alkaline medium[J]. Int J Electrochem Sci, 2011, 6: 2255-2263.

    21. [21]

      [21] BRANDALISE M, TUSI M M, PIASENTIN R M, DOS SANTOS M C, SPINAC E V, NETO A O. Synthesis of PdAu/C and PdAuBi/C Electrocatalysts by borohydride reduction method for ethylene glycol electro-oxidation in alkaline medium[J]. Int J Electrochem Sci, 2012, 7: 9609-9621.

    22. [22]

      [22] ZHU L D, ZHAO T S, XU J B, LIANG Z X. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media[J]. J Power Sources, 2009, 187(1): 80-84.

    23. [23]

      [23] RIBEIRO J, DOS ANJOS D M, KOKOH K B, COUTANCEAU C, LÉGER J M, OLIVI P, DE ANDRADE A R, TREMILIOSI-FILHO G. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell[J]. Electrochimica Acta, 2007, 52(24): 6997-7006.

    24. [24]

      [24] GERMAIN P S, PELL W G, CONWAY B E. Evaluation and origins of the difference between double-layer capacitance behaviour at Au-metal and oxidized Au surfaces[J]. Electrochim Acta, 2004, 49(11): 1775-1788.

  • 加载中
    1. [1]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    2. [2]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    3. [3]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    4. [4]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    5. [5]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    6. [6]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    7. [7]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    8. [8]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Qiyan WuQing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384

    10. [10]

      Qing LiYumei FengYuhua XieQi XuYifei LiYingjie YuFang LuoZehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074

    11. [11]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    12. [12]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    13. [13]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    14. [14]

      Runzi CaoHeng ShaoXinjie WangJian WangEnxiang ShangYang Li . Photocatalytic production of high-value-added fuels from biodegradable PBAT by Nb2O5/GCN heterojunction catalyst: Performance and mechanism. Chinese Chemical Letters, 2025, 36(7): 111029-. doi: 10.1016/j.cclet.2025.111029

    15. [15]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    16. [16]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    19. [19]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(0)
  • Abstract views(391)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return