Citation:
DONG Li-li, TONG Xi-li, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(7): 845-850.
-
Boron-doped silicon carbide (B0.1SiC) synthesized by the carbothermal reduction method was used as support to prepare Pt/B0.1SiC catalyst by cyclic voltammtric deposition of Pt nanoparticles. The crystal structure, surface property and morphology of the catalysts were studied with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy techniques and N2 adsorption-desorption experiment. It is shown that B atoms have been incorporated into the SiC lattice sites by substituting Si,which increases the electrical conductivity of SiC. Pt nanoparticles uniformly dispersed on the B0.1SiC support with an average size of 2.7 nm. The prepared Pt/B0.1SiC had a larger electrochemically active area and exhibited higher electrocatalytic activity and stability for methanol oxidation than the Pt/SiC synthesized by the same method. This shows that B-doped SiC is a promising support for preparing high-performance methanol oxidation electrocatalysts.
-
Keywords:
- methanol electrooxidation,
- B-doped SiC,
- Pt catalyst
-
-
-
[1]
[1] WASMUS S, KUVER A. Methanol oxidation and direct methanol fuel cells: A selective review[J]. J Electroanal Chem, 1999, 461(1/2): 14-31.
-
[2]
[2] LIU H S, SONG C J, ZHANG L, ZHANG J J, WANG H J, WILKINSON D P. A review of anode catalysis in the direct methanol fuel cell[J]. J Power Sources, 2006, 155(2): 95-110.
-
[3]
[3] CHEN A C, HOLT-HINDLE P. Platinum-based nanostructured materials: Synthesis, properties, and applications[J]. Chem Rev, 2010, 110(6): 3767-3804.
-
[4]
[4] ROEN L M, PAIK C H, JARVIC T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes[J]. Electrochem Solid-State Lett, 2004, 7(1): A19-A22.
-
[5]
[5] KANGASNIEMI K H, CONDIT D A, JARVI T D. Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions[J]. J Electrochem Soc, 2004, 151(4): E125-E132.
-
[6]
[6] WANG Y J, WILKINSON D P, ZHANG J J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts[J]. Chem Rev, 2011, 111(12): 7625-7651.
-
[7]
[7] QIU Z, HUANG H, DU J, FENG T, ZHANG W K, GAN Y P, TAO X Y. NbC nanowire-supported Pt nanoparticles as a high performance catalyst for methanol electrooxidation[J]. J Phys Chem C, 2013, 117(27): 13770-13775.
-
[8]
[8] QIU Z, HUANG H, DU J,TAO X Y, XIA Y, FENG T, GAN Y P, ZHANG W K. Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst support with enhance delectrocatalytic activity and durability for methanoloxidation[J]. J Mater Chem A, 2014, 2(21): 8003-8008.
-
[9]
[9] FANG L, HUANG X P, VIDAL-IGLESIAS F J, LIU Y P, WANG X L. Preparation, characterization and catalytic performance of a novel Pt/SiC[J]. Electrochem Commun, 2011, 13(12): 1309-1312.
-
[10]
[10] LV H F, MU S C, CHENG N C, PAN M. Nano-silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon[J]. Appl Catal B: Environ, 2010, 100(1/2): 190-196.
-
[11]
[11] TONG X L, DONG L L, JIN G Q, WANG Y Y, GUO X Y. Electrocatalytic performance of Pd nanoparticles supported on SiC nanowires for methanol oxidation in alkaline media[J]. Fuel Cells, 2011, 11(6): 907-910.
-
[12]
[12] DHIMAN R, JOHNSON E, SKOU E M, MORGEN P, ANDERSEN S M. SiC nanocrystals as Pt catalyst supports for fuel cell applications[J]. J Mater Chem A, 2013, 1(19): 6030-6036.
-
[13]
[13] LIU Z W, SHI Q Q, PENG F, WANG H J, YU H, LI J C, WEI X Y. Enhanced methanol oxidation activity of Pt catalyst supported on the phosphorus-doped multiwalled carbon nanotubes in alkaline medium[J]. Catal Commun, 2012, 22: 34-38.
-
[14]
[14] LIU Z W, SHI Q Q, PENG F, WANG H J, ZHANG R F, YU H. Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells[J]. Electrochem Commun, 2012, 16(1): 73-76.
-
[15]
[15] KRIENER M, MURANAKA T, KATO J, REN Z A, AKIMITSU J, MAENO Y. Superconductivity in heavily boron-doped silicon carbide[J]. Sci Technol Adv Mater, 2008, 9(4): 044205.
-
[16]
[16] 董莉莉, 王英勇, 童希立, 靳国强, 郭向云. 硼掺杂SiC的制备、表征及其可见光分解水产氢性能[J]. 物理化学学报, 2014, 30(1): 135-140. ( DONG Li-li, WANG Ying-yong, TONG Xi-li, JIN Guo-qiang, GUO Xiang-yun. Synthesis and characterization of boron-doped SiC for visible light driven hydrogen production[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 135-140.)
-
[17]
[17] DONG L L, TONG X L, WANG Y Y, GUO X N, JIN G Q, Guo X Y. Promoting performance and CO tolerance of Pt nanocatalyst for direct methanol fuel cells by supporting on high-surface-area silicon carbide[J]. J Solid State Electrochem, 2014, 18(4): 929-934.
-
[18]
[18] OSWALD S, WIRTH H. Core-level shifts at B-and Al-doped 6H-SiC studied by XPS[J]. Surf Interface Anal, 1999, 27(3): 136-141.
-
[19]
[19] SEO W S, KOUMOTO K, ARAI S. Effects of boron, carbon, and iron content on the stacking fault formation during synthesis of beta-SiC particles in the system SiO2-C-H2[J]. J Am Ceram Soc, 1998, 81(5): 1255-1261.
-
[20]
[20] AGATHOPOULOS S. Influence of synthesis process on the dielectric properties of B-doped SiC powders[J]. Ceram Int, 2012, 38(4): 3309-3315.
-
[21]
[21] XIN Y C, LIU J G, JIE X, LIU W M, LIU F Q, YIN Y, GU J, ZOU Z G. Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts[J]. Electrochim Acta, 2012, 60: 354-358.
-
[22]
[22] RALPH T R, HARDS G A, KEATING J E, CAMPBELL S A, WILKINSON D P, DAVIS M, STPIERRE J, JOHNSON M C. Low cost electrodes for proton exchange membrane fuel cells-Performance in single cells and Ballard stacks[J]. J Electrochem Soc, 1997, 144(11): 3845-3857.
-
[23]
[23] PARK S J, PARK J M. Preparation and characteristic of platinum catalyst deposited on boron-doped carbon nanotubes[J]. Curr Appl Phys, 2012, 12(5): 1248-1251.
-
[24]
[24] JEHNG J M, LIU W J, PAN T C, DAI Y M. Preparation of Pt nanoparticles on different carbonaceous structure and their applications to methanol electro-oxidation[J]. Appl Surf Sci, 2013, 268: 425-431.
-
[25]
[25] MU Y Y, LIANG H P, HU J S, JIANG L, WAN L J. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells[J]. J Phys Chem B, 2005, 109(47): 22212-22216.
-
[26]
[26] GUO S J, DONG S J, WANG E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. Acs Nano, 2010, 4(1): 547-555.
-
[1]
-
-
-
[1]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[6]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[8]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[9]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[10]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[11]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[12]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[13]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[14]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[15]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[16]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[17]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
-
[18]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
-
[19]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[20]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(482)
- HTML views(30)