Citation: DONG Li-li, TONG Xi-li, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 845-850. shu

Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation

  • Corresponding author: TONG Xi-li, 
  • Received Date: 19 December 2013
    Available Online: 14 March 2014

    Fund Project: 国家自然科学基金青年科学基金(21203233) (21203233)山西省青年科技研究基金(2013021011-6)。 (2013021011-6)

  • Boron-doped silicon carbide (B0.1SiC) synthesized by the carbothermal reduction method was used as support to prepare Pt/B0.1SiC catalyst by cyclic voltammtric deposition of Pt nanoparticles. The crystal structure, surface property and morphology of the catalysts were studied with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy techniques and N2 adsorption-desorption experiment. It is shown that B atoms have been incorporated into the SiC lattice sites by substituting Si,which increases the electrical conductivity of SiC. Pt nanoparticles uniformly dispersed on the B0.1SiC support with an average size of 2.7 nm. The prepared Pt/B0.1SiC had a larger electrochemically active area and exhibited higher electrocatalytic activity and stability for methanol oxidation than the Pt/SiC synthesized by the same method. This shows that B-doped SiC is a promising support for preparing high-performance methanol oxidation electrocatalysts.
  • 加载中
    1. [1]

      [1] WASMUS S, KUVER A. Methanol oxidation and direct methanol fuel cells: A selective review[J]. J Electroanal Chem, 1999, 461(1/2): 14-31.

    2. [2]

      [2] LIU H S, SONG C J, ZHANG L, ZHANG J J, WANG H J, WILKINSON D P. A review of anode catalysis in the direct methanol fuel cell[J]. J Power Sources, 2006, 155(2): 95-110.

    3. [3]

      [3] CHEN A C, HOLT-HINDLE P. Platinum-based nanostructured materials: Synthesis, properties, and applications[J]. Chem Rev, 2010, 110(6): 3767-3804.

    4. [4]

      [4] ROEN L M, PAIK C H, JARVIC T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes[J]. Electrochem Solid-State Lett, 2004, 7(1): A19-A22.

    5. [5]

      [5] KANGASNIEMI K H, CONDIT D A, JARVI T D. Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions[J]. J Electrochem Soc, 2004, 151(4): E125-E132.

    6. [6]

      [6] WANG Y J, WILKINSON D P, ZHANG J J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts[J]. Chem Rev, 2011, 111(12): 7625-7651.

    7. [7]

      [7] QIU Z, HUANG H, DU J, FENG T, ZHANG W K, GAN Y P, TAO X Y. NbC nanowire-supported Pt nanoparticles as a high performance catalyst for methanol electrooxidation[J]. J Phys Chem C, 2013, 117(27): 13770-13775.

    8. [8]

      [8] QIU Z, HUANG H, DU J,TAO X Y, XIA Y, FENG T, GAN Y P, ZHANG W K. Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst support with enhance delectrocatalytic activity and durability for methanoloxidation[J]. J Mater Chem A, 2014, 2(21): 8003-8008.

    9. [9]

      [9] FANG L, HUANG X P, VIDAL-IGLESIAS F J, LIU Y P, WANG X L. Preparation, characterization and catalytic performance of a novel Pt/SiC[J]. Electrochem Commun, 2011, 13(12): 1309-1312.

    10. [10]

      [10] LV H F, MU S C, CHENG N C, PAN M. Nano-silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon[J]. Appl Catal B: Environ, 2010, 100(1/2): 190-196.

    11. [11]

      [11] TONG X L, DONG L L, JIN G Q, WANG Y Y, GUO X Y. Electrocatalytic performance of Pd nanoparticles supported on SiC nanowires for methanol oxidation in alkaline media[J]. Fuel Cells, 2011, 11(6): 907-910.

    12. [12]

      [12] DHIMAN R, JOHNSON E, SKOU E M, MORGEN P, ANDERSEN S M. SiC nanocrystals as Pt catalyst supports for fuel cell applications[J]. J Mater Chem A, 2013, 1(19): 6030-6036.

    13. [13]

      [13] LIU Z W, SHI Q Q, PENG F, WANG H J, YU H, LI J C, WEI X Y. Enhanced methanol oxidation activity of Pt catalyst supported on the phosphorus-doped multiwalled carbon nanotubes in alkaline medium[J]. Catal Commun, 2012, 22: 34-38.

    14. [14]

      [14] LIU Z W, SHI Q Q, PENG F, WANG H J, ZHANG R F, YU H. Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells[J]. Electrochem Commun, 2012, 16(1): 73-76.

    15. [15]

      [15] KRIENER M, MURANAKA T, KATO J, REN Z A, AKIMITSU J, MAENO Y. Superconductivity in heavily boron-doped silicon carbide[J]. Sci Technol Adv Mater, 2008, 9(4): 044205.

    16. [16]

      [16] 董莉莉, 王英勇, 童希立, 靳国强, 郭向云. 硼掺杂SiC的制备、表征及其可见光分解水产氢性能[J]. 物理化学学报, 2014, 30(1): 135-140. ( DONG Li-li, WANG Ying-yong, TONG Xi-li, JIN Guo-qiang, GUO Xiang-yun. Synthesis and characterization of boron-doped SiC for visible light driven hydrogen production[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 135-140.)

    17. [17]

      [17] DONG L L, TONG X L, WANG Y Y, GUO X N, JIN G Q, Guo X Y. Promoting performance and CO tolerance of Pt nanocatalyst for direct methanol fuel cells by supporting on high-surface-area silicon carbide[J]. J Solid State Electrochem, 2014, 18(4): 929-934.

    18. [18]

      [18] OSWALD S, WIRTH H. Core-level shifts at B-and Al-doped 6H-SiC studied by XPS[J]. Surf Interface Anal, 1999, 27(3): 136-141.

    19. [19]

      [19] SEO W S, KOUMOTO K, ARAI S. Effects of boron, carbon, and iron content on the stacking fault formation during synthesis of beta-SiC particles in the system SiO2-C-H2[J]. J Am Ceram Soc, 1998, 81(5): 1255-1261.

    20. [20]

      [20] AGATHOPOULOS S. Influence of synthesis process on the dielectric properties of B-doped SiC powders[J]. Ceram Int, 2012, 38(4): 3309-3315.

    21. [21]

      [21] XIN Y C, LIU J G, JIE X, LIU W M, LIU F Q, YIN Y, GU J, ZOU Z G. Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts[J]. Electrochim Acta, 2012, 60: 354-358.

    22. [22]

      [22] RALPH T R, HARDS G A, KEATING J E, CAMPBELL S A, WILKINSON D P, DAVIS M, STPIERRE J, JOHNSON M C. Low cost electrodes for proton exchange membrane fuel cells-Performance in single cells and Ballard stacks[J]. J Electrochem Soc, 1997, 144(11): 3845-3857.

    23. [23]

      [23] PARK S J, PARK J M. Preparation and characteristic of platinum catalyst deposited on boron-doped carbon nanotubes[J]. Curr Appl Phys, 2012, 12(5): 1248-1251.

    24. [24]

      [24] JEHNG J M, LIU W J, PAN T C, DAI Y M. Preparation of Pt nanoparticles on different carbonaceous structure and their applications to methanol electro-oxidation[J]. Appl Surf Sci, 2013, 268: 425-431.

    25. [25]

      [25] MU Y Y, LIANG H P, HU J S, JIANG L, WAN L J. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells[J]. J Phys Chem B, 2005, 109(47): 22212-22216.

    26. [26]

      [26] GUO S J, DONG S J, WANG E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. Acs Nano, 2010, 4(1): 547-555.

  • 加载中
    1. [1]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    18. [18]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    19. [19]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    20. [20]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

Metrics
  • PDF Downloads(0)
  • Abstract views(508)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return