Citation:
FENG Jun-peng, ZHANG Ye, LÜ Zhan-jun, LI Xue-kuan. Study of poisoning effect of dimethyl disulfide on Ni/Al2O3 catalyst for hydrogenation[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(7): 833-838.
-
Poisoning effect of dimethyl disulfide (CH3SSCH3) on Ni/Al2O3 catalysts for hydrogenation of benzene, cyclohexene and styrene was studied. The structures and properties of the catalysts were investigated by means of BET, XRD, H2-TPR, XPS, SEM and EA. Results indicated that with the existence of CH3SSCH3, Ni/Al2O3 catalysts quickly deactivated for benzene and cyclohexene hydrogenation, while the activity for styrene hydrogenation remained well. The sulfur tolerance of Ni/Al2O3 catalysts for cyclohexene hydrogenation was little better than that of benzene hydrogenation. The conversion of conjugated double bond of styrene can keep 100% for a long time. For hydrogenation reactions, the poisoning effects of CH3SSCH3 over Ni/Al2O3 were in the order of aromatic nucleus>monoene>conjugated alkene. In addition, poisoning mechanism of CH3SSCH3 for Ni/Al2O3 catalyst was also discussed. CH3SSCH3 molecules were firstly adsorbed on the surface of catalyst and then dissociated to CH4 under the function of hydrogen and catalyst. It is concluded that the toxicity of carbon in CH3SSCH3 for catalysts is neglectful and remaining sulfur is the dominant poisoning factor by the interaction with active component.
-
Keywords:
- dimethyl disulfide,
- Ni/Al2O3,
- hydrogenation,
- poison
-
-
-
[1]
[1] 孙连霞, 孙明永, 戚杰, 胡延秀, 朱义勤. 裂解汽油选择性加氢催化剂的研究[J]. 石油炼制与化工, 1998, 29(11): 6-9.
-
[2]
(SUN Lian-xia, SUN Ming-yong, QI Jie, HU Yan-xiu, ZHU Yi-qin. Preparation of a selective hydrogenation catalyst for steam cracking naphtha[J]. Petroleum Processing and Petrochemicals, 1998, 29(11): 6-9.)
-
[3]
[2] 唐明兴, 李学宽, 吕占军, 葛晖, 周立公. 苯中硫在Ni/ZnO催化剂上加氢吸附脱除的研究[J]. 燃料化学学报, 2009, 37(6): 707-712.
-
[4]
(TANG Ming-xing, LI Xue-kuan, LV Zhan-jun, GE Hui, ZHOU Li-gong. Ultra-deep hydrodesulfurization of benzene over Ni/ZnO catalyst[J]. Journal of Fuel Chemistry and Technology, 2009, 37(6): 707-712.)
-
[5]
[3] AGUINAGA A, MONTES M, ASUA J. Effect of the preparation on the initial toxicity of supported nickel catalysts deativated by thiophene[J]. J Technol Biotechnol, 1991, 52(3): 369-381.
-
[6]
[4] POLES E K, VANBEEK W P, DEN H W. Deactivation of fixed bed nickel hydrogenation catalysts by sulfur[J]. Fuel, 1995, 74(12): 1800-1805.
-
[7]
[5] 张奇, 刘春艳, 梁长海, 何德民, 关珺, 张秋民. NiWS/γ-Ni/Al2O3催化剂上吲哚加氢脱氮反应: H2S和喹啉的影响[J]. 燃料化学学报, 2011, 39(5): 361-366.
-
[8]
(ZHANG Qi, LIU Chun-yan, LIANG Chang-hai, HE De-min, GUAN Jun, ZHANG Qiu-min. Hydrodenitrogenation of indole over NiWS/γ-Ni/Al2O3 catalyst: Effects of H2S and quinoline[J]. Journal of Fuel Chemistry and Technology, 2011, 39(5): 361-366.)
-
[9]
[6] 苏晓云, 李学宽, 杜明仙, 吕占军. 硫化物对Ni/Al2O3催化剂加氢性能的影响[J]. 石油炼制与化工, 2009, 40(4): 9-13.
-
[10]
(SU Xiao-yun, LI Xue-kuan, DU Ming-xian, LV Zhan-jun. The effect of sulfides on the hydrogenation performance of Ni/Al2O3 catalyst[J]. Petroleum Processing and Petrochemicals, 2009, 40(4): 9-13.)
-
[11]
[7] CALVIN H, BARTHOLOMEW. Mechanism of nickel catalyst poisoning[J]. Stud Surf Sci Catal, 1987, 34: 81-104.
-
[12]
[8] NG C F, MARTIN G A. Poisoning of Ni-SiO2 catalysts with H2S: Chemisorption of H2, CO, C6H6, and C2H2 studied by magnetic methods[J]. J Catal, 1978, 54(3): 384-396.
-
[13]
[9] 左东华, 谢玉萍, 聂红, 石亚华, 李灿. 4, 6-二甲基二苯并噻吩加氢脱硫反应机理的研究I. NiW体系催化剂的催化行为[J]. 催化学报, 2002, 23(3): 271-275.
-
[14]
(ZUO Dong-hua, XIE Yu-ping, NIE Hong, SHI Ya-hua, LI Can. Study on hydrodesulfurization mechanism of 4, 6-dimethyldibenzothiophene I. Catalytic behavior of NiW-based catalysts[J]. Chinese Journal of Catalysis, 2002, 23(3): 271-275.)
-
[15]
[10] AHMED K, CHADWICK D, KERSHENBAUM L S. Mechanisms for thiophene poisoning of nickel catalysts: Effect of crystallite size[J]. Stud Surf Sci Catal, 1987, 34: 513-521.
-
[16]
[11] MARÉCOT P, PARAISO E, DUMS J M, BARBIER J. Deactivation of nickel catalysts by sulphur compounds. 2. Chemisorption of hydrogen sulphide[J]. Appl Catal A: Gen, 1992, 80(1): 89-97.
-
[17]
[12] BESTEN I E D, SELWOOD P W. The chemisorption of hydrogen sulfide, methyl sulfide, and cyclohexene on supported nickel catalysts[J]. J Catal, 1961, 1(2): 93-102.
-
[18]
[13] 黄华, 尹笃林, 文建军, 张茂昆, 徐斌. Ni含量对镍催化剂芳烃加氢抗硫性能的影响[J]. 工业催化, 2005, 13(1): 13-16.
-
[19]
(HUANG Hua, YIN Du-lin, WEN Jian-jun, ZHANG Mao-kun, XU Bin. Effect of nickel content on sulfur tolerance of nickel-based catalysts for aromatic hydrogenation[J]. Industrial Catalysis, 2005, 13(1): 13-16.)
-
[20]
[14] CHATURVEDI S, RODRIGUEZ J A, BRITO J L. Characterization of pure and sulfided NiMoO4 catalysts using synchrotron-based X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR)[J]. Catal Lett, 1998, 51(1): 85-93.
-
[21]
[15] ALBERTON A L, SOUZA M M V M. SCHMAL M. Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts[J]. Catal Today, 2007, 123(1): 257-264.
-
[22]
[16] GALEA N M, LO J M H, ZIEGLER T. A DFT study on the removal of adsorbed sulfur from a nickel (111) surface: Reducing anode poisoning[J]. J Catal, 2009, 263(2): 380-389.
-
[1]
-
-
-
[1]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[2]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[3]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[4]
Aiyi Xin , Jiawei Li , Xinyang Ran , Chuanjiang Fu , Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
-
[7]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[8]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[9]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[10]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[11]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[12]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[13]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[14]
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206
-
[15]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[16]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[17]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[18]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[19]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[20]
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1076)
- HTML views(167)