Citation: WEI Jian, MA Xian-gang, FANG Chuan-yan, GE Qing-jie, XU Heng-yong. Iron-silica nanocomposites as a catalyst for the selective conversion of syngas to light olefins[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 827-832. shu

Iron-silica nanocomposites as a catalyst for the selective conversion of syngas to light olefins

  • Corresponding author: GE Qing-jie, 
  • Received Date: 22 January 2014
    Available Online: 12 March 2014

  • A series of Fe/SiO2 catalysts were prepared by one-pot synthesis and conventional co-precipitation methods; they were characterized by N2 physisorption, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and temperature-programmed reduction. The performances of the Fe/SiO2 catalysts in Fischer-Tropsch synthesis (FTS) were evaluated in a fixed-bed reactor for the production of light olefins from syngas. The results showed that in the Fe/SiO2 catalyst prepared by one-pot synthesis method, the iron oxide is present as iron-silica nanocomposite in the form of Fe3O4 (magnetite). Compared with the catalyst prepared by conventional co-precipitation method, the magnetite-silica nanocomposite by one-pot synthesis exhibits a more uniform spherical-like morphology, narrower size distribution (30 nm in average) and better reducibility. In FTS, the Fe/SiO2 catalyst prepared by one-pot synthesis method exhibits higher activity and selectivity to light olefin as well as lower selectivity to methane and better stability.
  • 加载中
    1. [1]

      [1] 杨学萍, 董丽. 合成气直接制低碳烯烃技术进展与经济性分析[J]. 化工进展, 2012, 31(8): 1726-1731. (YANG Xue-ping, DONG Li. Technical progress and economical ananysis on the direct production of light olefins from syngas[J]. Chemical Industry and Engineering Progress, 2012, 31(8): 1726-1731.)

    2. [2]

      [2] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas[J]. ACS Catal, 2013, 3(9): 2130-2149.

    3. [3]

      [3] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev, 2008, 37(12): 2758-2781.

    4. [4]

      [4] ABELLO S, MONTANE D. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis[J]. ChemSusChem, 2011, 4(11): 1538-1556.

    5. [5]

      [5] MCDONALD M A, STORM D, BOUDART M. Hydrocarbon synthesis from CO-H2 on supported iron: Effect of particle size and interstitials[J]. J Catal, 1986, 102(2): 386-400.

    6. [6]

      [6] BOUDART M, MCDONALD M A. Structure sensitivity of hydrocarbon synthesis from carbon monoxide and hydrogen[J]. J Phys Chem, 1984, 88(11): 2185-2195.

    7. [7]

      [7] DEN BREEJEN J P, SIETSMA J R A, FRIEDRICH H, BITTER J H, DE JONG K P. Design of supported cobalt catalysts with maximum activity for the Fischer-Tropsch synthesis[J]. J Catal, 2010, 270(1): 146-152.

    8. [8]

      [8] 马利海, 张建利, 范素兵, 赵天生. 水热法Fe-Mn催化剂制备及其合成气制低碳烯烃催化活性[J]. 燃料化学学报, 2013, 41(11): 1356-1360. (MA Li-hai, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Preparation of Fe-Mn catalyst by hydrothermal methodand its catalytic activity for the synthesis of light olefins from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1356-1360.)

    9. [9]

      [9] KANG S H, BAE J W, SAI PRASAD P S, PARK S J, WOO K J, JUN K W. Effect of preparation method of Fe-based Fischer-Tropsch catalyst on their light olefin production[J]. Catal Lett, 2009, 130(3/4): 630-636.

    10. [10]

      [10] LAURENT S, FORGE D, PORT M, ROCH A, ROBIC C, VANDER ELST L, MULLER R N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chem Rev, 2008, 108(6): 2064-2110.

    11. [11]

      [11] GOLE A, STONE J W, GEMMILL W R, ZUR LOYE H C, MURPHY C J. Iron oxide coated gold nanorods: Synthesis, characterization, and magnetic manipulation[J]. Langmuir, 2008, 24(12): 6232-6237.

    12. [12]

      [12] XIONG Y, YE J, GU X, CHEN Q W. Synthesis and assembly of magnetite nanocubes into flux-closure rings[J]. J Phys Chem C, 2007, 111(19): 6998-7003.

    13. [13]

      [13] RODULFO-BAECHLER S M, GONZÁ LEZ-CORTÉS S L, OROZCO J, SAGREDO V, FONTAL B, MORA A J, DELGADO G. Characterization of modified iron catalysts by X-ray diffraction, infrared spectroscopy, magnetic susceptibility and thermogravimetric analysis[J]. Mater Lett, 2004, 58(20): 2447-2450.

    14. [14]

      [14] ZHANG C H, WAN H J, YANG Y, XIANG H W, LI Y W. Study on the iron-silica interaction of a co-precipitated Fe/SiO2 Fischer-Tropsch synthesis catalyst[J]. Catal Commun, 2006, 7(9):733-738.

    15. [15]

      [15] SUO H Y, WANG S G, ZHANG C H, XU J, WU B S, YANG Y, XIANG H W, LI Y W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012, 286: 111-123.

    16. [16]

      [16] JOZWIAK W K, KACZMAREK E, MANIECKI T P, IGNACZAK W, MANIUKIEWICZ W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres[J]. Appl Catal A: Gen, 2007, 326(1): 17-27.

    17. [17]

      [17] REDL F X, BLACK C T, PAPAEFTHYMIOU G C, SANDSTROM R L, YIN M, ZENG H, MURRAY C B, O'BRIEN S P. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale[J]. J Am Chem Soc, 2004, 126(44): 14583-14599.

    18. [18]

      [18] WAN H J, WU B S, ZHANG C H, XIANG H W, LI Y W. Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer-Tropsch synthesis[J]. J Mol Catal A: Chem, 2008, 283(1/2): 33-42.

    19. [19]

      [19] 沈菊李, 刘化章, 李小年, 胡樟能, 国海光, 张天明. 费-托合成Fe1-xO基熔铁催化剂的研究[J]. 催化学报, 2004, 25(10): 785-788. (SHEN Ju-li, LIU Hua-zhang, LI Xiao-nian, HU Zhang-neng, GUO Hai-guang, ZHANG Tian-ming. Study on Fe1-xO-based fused iron catalyst for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2004, 25(10): 785-788.)

  • 加载中
    1. [1]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    2. [2]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    10. [10]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    13. [13]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    14. [14]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    18. [18]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    19. [19]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    20. [20]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

Metrics
  • PDF Downloads(0)
  • Abstract views(754)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return