Citation: ZHOU Yan, SHUI Heng-fu, LEI Zhi-ping, REN Shi-biao, WANG Zhi-cai, PAN Chun-xiu. A kinetic study on the liquefaction of Shenfu coal catalyzed by Ni-Mo-S/Al2O3[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(7): 785-791. shu

A kinetic study on the liquefaction of Shenfu coal catalyzed by Ni-Mo-S/Al2O3

  • Corresponding author: SHUI Heng-fu, 
  • Received Date: 4 April 2014
    Available Online: 23 May 2014

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201302) (973计划,2011CB201302)国家自然科学基金(U1261208,21176001,51174254,21306001) (U1261208,21176001,51174254,21306001)科技部中日国际合作项目(2013DFG60060)。 (2013DFG60060)

  • A kinetic model for Shenfu (SF) coal liquefaction catalyzed by Ni-Mo-S/Al2O3 was built by using lumped kinetic method, where the liquefaction products were fractioned by solvents. The model has considered the mutual transformations among coal, preasphaltene (PA), asphaltene (AS) and oil in the process, in which a series of consecutive, parallel, regressive and coking reactions were integrated. The results showed that the process of SF coal liquefaction catalyzed by Ni-Mo-S/Al2O3 can be well simulated by the model; based on this kinetic model, the activation energy of SF coal liquefaction is 125~244 kJ/mol. There exist obviously regressive reactions of oil and gas to AS and AS to PA at high liquefaction temperature. Moreover, the coking reactions of AS and PA to coke may take place when the liquefaction temperature exceeds 420℃.
  • 加载中
    1. [1]

      [1] MOHAN G, SILLA H. Kinetics of donor-solvent liquefaction of bituminous coals in nonisothermal experiments[J]. Ind Eng Chem Process Des Dev, 1981, 20(2): 349-356.

    2. [2]

      [2] WELLER S. Kinetics of coal hydrogenation conversion of asphaltene[J]. Ind Eng Chem, 1951, 43(7): 1575-1579.

    3. [3]

      [3] CRONAUER D C, SHAH Y T, RUBERTO R G. Kinetics of thermal liquefaction of belleayr subbituminous coal[J]. Ind Eng Chem Process Des Dev, 1978, 17(3): 281-288.

    4. [4]

      [4] DING W, LIANG J, ANDERSON L L. Kinetics of thermal and catalytic coal liquefaction with plastic-derived liquids as solvent[J]. Ind Eng Chem Res, 1997, 36(5): 1444-1452.

    5. [5]

      [5] SIMSEK E H, KARADUMAN A, OLCAY A. Investigation of dissolution mechanism of six Turkish coals in tetralin with microwave energy[J]. Fuel, 2001, 80(15): 2181-2188.

    6. [6]

      [6] LI X, HU H Q, ZHU S W, HU S X, WU B, MENG M. Kinetics of coal liquefaction during heating-up and isothermal stages[J]. Fuel, 2008, 87(4/5): 508-513.

    7. [7]

      [7] SHUI H F, CHEN Z X, WANG Z C, ZHANG D X. Kinetics of Shenhua coal liquefication catalyzed by SO42-/ZrO2 solid acid[J]. Fuel, 2010, 89(1): 67-72.

    8. [8]

      [8] CEYHUN I. Kinetic studies on Karlova coal[J]. Theor Found Chem Eng, 2003, 37(4): 416-420.

    9. [9]

      [9] PRAKASH K R, ARTHUR R T. Kinetic model development for single-stage coal coprocessing with petroleum waste[J]. Fuel Process Technol, 1997, 51(1): 83-100.

    10. [10]

      [10] SHALABI M A, BALDWIN, R M, BAIN R L, GARY I H, GOLDEN I O. Non-catalytic coal liquefaction in a donor solvent. Rate of formation of oil, asphaltenes, and preasphaltenes[J]. Coal Process Technol, 1978, 18(3): 474-478.

    11. [11]

      [11] GERGINA A, DIMITAR K, NEDIALKA D. Kinetics of donor-solvent liquefaction of Bulgarian brown coal[J]. Fuel, 1989, 68(11): 1434-1438.

    12. [12]

      [12] SUZUKI T, ANDO T, WATANABE Y. Kinetic studies on the hydroliquefaction of coals using organometallic complexes[J]. Energy Fuels, 1987, 1(3): 294-300.

    13. [13]

      [13] XU B, KANDIYOTI R. Two-stage kinetic model of primary coal liquefaction[J]. Energy Fuels, 1996, 10(5): 1115-1122.

    14. [14]

      [14] GERTENBACH D D, BALDWIN R M, BAIN R L. Modeling of bench-scale coal liquefaction systems[J]. Ind Eng Chem Process Des Dev, 1982, 21(3): 490-500.

  • 加载中
    1. [1]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    2. [2]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    12. [12]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    13. [13]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    17. [17]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    18. [18]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(429)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return