Citation:
PENG Bing-xian, WU Dai-she. Distribution and content of bromine in Chinese coals[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(7): 769-773.
-
The bromine content of 305 coal samples from 27 provinces, municipalities and autonomous regions of China were tested, then the distribution of bromine with different geological ages, coal ranks, coal-cumulating areas was analyzed. The results show that the coals with moderate and low bromine content are predominant in China. The bromine content ranges from 0.12 to 69.66 μg/g, and it follows a logarithm normal distribution. Thus the geometric mean, 7.04 μg/g, is regarded as the average bromine content in Chinese coals. This is less than that in many countries and close to the average bromine content (7.10 μg/g) in Japanese coals. In Chinese coals, the average bromine content is less than 5 μg/g in 13 districts, 5~15 μg/g in 9 areas, and more than 15 μg/g in 5 regions. Based on coal rank, bromine content decreases gradually from bituminous coal, anthracite, lignite to subbituminous coal. As for coal-forming period, bromine content decreases from Early carboniferous through Late Permian, Late Carboniferous, Early Permian, Middle Jurassic, Late Triassic, Early Jurassic, Late Jurassic, Tertiary to Middle Carboniferous. According to coal-cumulating areas, bromine content decreases from northwestern China, northern China, southern China, Yunnan and Tibet to northeastern China. But all of them have no notable effect on the bromine content in Chinese coal.
-
Keywords:
- Chinese coal,
- bromine,
- content,
- distribution
-
-
-
[1]
[1] FOSTER K L, PLASTRIDGE R A, BOTTENHEIM J W, SHEPSON P B, FINLAYSON-PITTS B J. The role of Br2 and BrCl in surface ozone destruction at polar sunrise[J]. Science, 2001, 291(5503): 471-474.
-
[2]
[2] PAVELKA S. Metabolism of bromide and its interference with the metabolism of iodine[J]. Physiol Res, 2004, 53(S1): S81-S90.
-
[3]
[3] PAVELKA S, BABICKY A, LENER J, VOBECKY M. Impact of high bromide intake in the rat dam on iodine transfer to the sucklings[J]. Food Chem Toxicol, 2002, 40(7):1041-1045.
-
[4]
[4] 彭炳先, 吴代赦, 李萍. 逐级提取法研究煤中溴的赋存状态[J]. 环境科学, 2011, 32(7): 2109-2113. (PENG Bing-xian, WU Dai-she, LI Ping. Study on modes of occurrence of bromine in coals using sequential chemical extraction procedure[J]. Environmental Science, 2011, 32(7): 2109-2113.)
-
[5]
[5] 彭炳先, 吴代赦. 煤中溴的淋滤行为研究[J]. 燃料化学学报, 2011, 39(9): 647-651. (PENG Bing-xian, WU Dai-she. Leaching characteristics of bromine in coal[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 647-651.)
-
[6]
[6] VASSILEV S V, ESKENAZY G M, VASSILEV C G. Contents, modes of occurrence and origin of chlorine and bromine in coal[J]. Fuel, 2000, 79(8): 903-921.
-
[7]
[7] 王文峰, 秦勇, 宋党育. 燃煤电厂中微量元素迁移释放研究[J]. 环境科学学报, 2003, 23(6): 748-752. (WANG Wen-feng, QIN Yong, SONG Dang-yu. Study on the mobility and release of trace elements in coal-fired power plant[J]. Journal of Environmental Sciences, 2003, 23(6): 748-752.)
-
[8]
[8] 彭炳先, 吴代赦. 烟煤和无烟煤中碘的赋存形态及其环境效应分析[J]. 燃料化学学报, 2012, 40(3): 257-262. (PENG Bing-xian, WU Dai-she. Modes of iodine occurrence in bituminous coal and anthracite and their environmental effects[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 257-262.)
-
[9]
[9] 唐修义, 黄文辉. 中国煤中微量元素[M]. 北京: 商务印书馆, 2004. (TANG Xiu-yi, HUANG Wen-hui. Trace elements in Chinese coal[M]. Beijing, Commercial Press, 2004.)
-
[10]
[10] PENG B, WU D, LAI J, XIAO H, LI P. Simultaneous determination of halogens (F, Cl, Br, and I) in coal using pyrohydrolysis combined with ion chromatography[J]. Fuel, 2012, 4(94): 629-631.
-
[11]
[11] 王运泉, 任德贻, 雷加锦, 唐跃刚, 杨绍晋, 杨亦男. 煤中微量元素分布特征初步研究[J]. 地质科学,1997, 32(1): 65-73. (WANG Yun-quan, REN De-yi, LEI Jia-jin, TANG Yue-gang, YANG Shao-jin, YANG Yi-nan. Distribution of minor elements in Chinese coals[J]. Scientia Geologica Sinica, 1997, 32(1): 65-73.)
-
[12]
[12] REN D, ZHAO F, WANG Y, YANG S. Distribution of minor and trace elements in Chinese coals[J]. Int J Coal Geol, 1999, 40(3/4):109-118.
-
[13]
[13] Юдович ЯЭ. Κетрис МП и Мерц АВ. Эл ементы-прмеси в ископаемых углей. Ленинград: Наука239 стр, 1985) (in Russian).
-
[14]
[14] SWAINE D J. Trace elements in coal[M]. London: Butterworths, 1990: 278.
-
[15]
[15] KETRIS M P, YUDOVICH Y E. Estimations of clarkes for carbonaceous biolithes: world average for trace element contents in black shales and coals[J]. Int J Coal Geol, 2009, 78(2): 135-148.
-
[16]
[16] FRINKELMAN R B. Trance and minor elements in coal. In: Organic and geochemistry[M]. New York: Plenum Press, 1993: 593-607.
-
[17]
[17] SPEARS D A, ZHENG Y. Geochemistry and origin of elements in UK coals[J]. Int J Coal Geol, 1999, 38(3/4): 161-179.
-
[18]
[18] 杨起, 任德贻. 中国煤变质问题的探讨[J]. 煤田地质与勘探, 1981, 1: 1-10. (YANG Qi, REN De-yi. Investigation on the problem of Chinese coal metamorphism[J]. Coal Geology & Exploration, 1981, 1: 1-10.)
-
[19]
[19] YANG Q, REN D, PAN Z. Preliminary investigation on the metamorphism of Chinese coals[J]. Int J Coal Geol, 1982, 2(1): 31-48.
-
[20]
[20] YANG Q, PAN Z, WENG C, SUY, WANG Z. Telemagmatic metamorphism and its effects on Chinese coal properties[J]. Geoscience, 1987, 1: 123-130.
-
[21]
[21] 杨起, 吴冲龙, 汤达祯, 康西栋, 刘大锰. 中国煤变质作用[J]. 地球科学, 1996, 21(3): 78-87. (YANG Qi, WU Chong-long, TANG Da-zhen, KANG Xi-dong, LIU Da-meng. Coal metamorphismin China[J]. Earth Science, 1996, 21(3): 78-87.)
-
[22]
[22] 杨起. 中国煤的叠加变质作用[J]. 地学前缘, 1999, 6: 1-8. (YANG Qi. Superimposed metamorphism of Chinese coal[J]. Earth Science Frontiers, 1999, 6: 1-8.)
-
[23]
[23] VALKOVIE V. Trace elements in coal. Boca Raton: CRC Press, 1983.
-
[24]
[24] WILSON M A, PUGMIRE R J, KARAS J, ALEMANY L B, WOOLFENDEN W R, GRANT D W, GIVEN P H. Carbon distribution in coals and coal macerals by cross polarization magic angles pinning carbon-13 nuclear magnetic resonance spectrometry[J]. Anal Chem, 1984, 56(6): 933-943.
-
[25]
[25] GOODARZI F. Geology of trace elements in coal. In: Environmental aspects of trace elements in coal(chapter 4) [M]. Dordrecht: Kluwer Academic Publishers, 1995: 51-75.
-
[26]
[26] FINKELMAN R B. Modes of occurrence of trace elements in coal[M]. US Gelogical Survey, 1981, 301.
-
[27]
[27] 王煦曾, 朱榔如, 王杰. 中国煤田的形成与分布[M]. 北京: 科学出版社, 1992: 69-71. (WANG Xu-zeng, ZHU Lang-ru, WANG jie. Formation and distribution of coal mines in China[M]. Beijing: Science Press, 1992: 69-71).
-
[1]
-
-
-
[1]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[2]
Xiaoyan Wang , Chao Wang , Dongmei Dai , Yanling Geng , Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074
-
[3]
Jiangjuan Shao , Xuan Li , Jingdan Weng , Xiaolei Chen , Fei Xu , Yulu Ma , Nianguang Li , Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079
-
[4]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[5]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[6]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[7]
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
-
[8]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[9]
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
-
[10]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[11]
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
-
[12]
Liping Wang , Huanfeng Wang , Yuling Li , Lingchuan Li , Xiaojing Li , Huifeng Chen , Bowen Ji , Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035
-
[13]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[14]
Chengcheng Si , Linshan Chai , Huiyuan Liu , Liye Sun , Shijian Cheng , Hailing Li , Wenyun Wang , Fang Liu , Qing Feng , Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069
-
[15]
Hui Li , Jia Nie , Zhongyuan Lü , Hujun Qian , Youliang Zhu , Fuquan Bai , Zexing Qu , Ronglin Zhong . Developing a Lecture Mode for Theoretical and Computational Chemistry Curriculum under the “Modernization of Chinese Education” Initiative. University Chemistry, 2025, 40(3): 1-9. doi: 10.3866/PKU.DXHX202402007
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(325)
- HTML views(26)