Citation: ZHAO Zhao-hui, ZOU Han-bo, LIN Wei-ming. Reaction kinetics of ammonia decomposition over La-CoMoNx/CNTs catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 758-762. shu

Reaction kinetics of ammonia decomposition over La-CoMoNx/CNTs catalyst

  • Corresponding author: ZHAO Zhao-hui, 
  • Received Date: 3 December 2013
    Available Online: 27 March 2014

    Fund Project: 国家自然科学基金(20806017) (20806017)广东省自然科学基金(10151009101000009)。 (10151009101000009)

  • The reaction kinetics of ammoniade composition over La-CoMoNx/CNTs catalyst were studied. The effect of N2 concentration, H2 concentration, NH3 concentration and reaction temperature on the rate of ammonia decomposition were investigated. According to the experimental data, the correlative kinetic parameters were determined based on an exponential equation. The intrinsic kinetic equation was obtained. The activation energy of the reaction was 93.948 kJ/mol. The reaction mechanism was also discussed. The reaction rate of ammonia decomposition over La-CoMoNx/CNTs was controlled by the combination desorption of nitrogen on the surface of the catalyst.
  • 加载中
    1. [1]

      [1] YIN S F, XU B Q, NG C F, AU C T. Nano Ru/CNTs: A highly active and stable catalyst for the generation of CO-free hydrogen in ammonia decomposition[J]. Appl Catal B: Environ, 2004, 48: 237-241.

    2. [2]

      [2] LORENZUT B, MONTINI T, BEVILACQUA M, FORNASIERO P. FeMo-based catalysts for H2 production by NH3 decomposition[J]. Appl Catal B: Environ, 2012, 125: 409-417.

    3. [3]

      [3] PLANA C, ARMENISE S, MONZON A, GARCÍA-BORDEJÉA E. Ni on alumina-coated cordierite monoliths for in situ generation for CO-free H2 from ammonia[J]. J Catal, 2010, 275(2): 228-235.

    4. [4]

      [4] YUZAWA H, MORI T, ITOH H, YOSHIDA H. Reaction mechanism of ammonia decomposition to nitrogen and hygrogen over metal loaded titanium oxide photocatalyst[J]. J Phys Chem C, 2012, 116(6): 4126-4123.

    5. [5]

      [5] TSAI W, VAJO J J, WEINBERG W H. Inhibition by hydrogen of the heterogeneous decomposition of ammonia on platinum[J]. J Phys Chem, 1985, 89(23): 4926-4932.

    6. [6]

      [6] CHOUDHARY T V, SIVADINARAYANA C, GOODMAN D W. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications[J]. Catal Lett, 2001, 72(3/4): 197-201.

    7. [7]

      [7] TSAI W, WEINBERG W H. Steady-state decomposition of ammonia on the Ru(001) surface[J]. J Phys Chem, 1987, 91: 5302-5307.

    8. [8]

      [8] HASHIMOTO K, TOUKAI N. Decomposition of ammonia over a catalyst consisting of ruthenium metal and cerium oxides supported on Y-form zeolite[J]. J Mol Catal A: Chem, 2000, 161(1): 171-178.

    9. [9]

      [9] GANLEY J C, THOMAS F S, SEEBAUER E G, MASEL R I. A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia[J]. Catal Lett, 2004, 96(3/4): 117-122.

    10. [10]

      [10] OYAMA S T. Kinetics of ammonia decomposition on vanadium nitride[J]. J Catal, 1992, 133(2): 358-369.

    11. [11]

      [11] WISE R S, MARKEL E J. Catalytic NH3 decomposition by topotactic molybdenum oxides and nitrides: Effect on temperature programmed γ-Mo2N synthesis[J]. J Catal, 1994, 145(2): 335-343.

    12. [12]

      [12] ZHAO Z H, ZOU H B, LIN W M. Effect of rare earth and other cationic promoters on the properties of CoMoNx/CNTs catalysts for ammonia decomposition[J]. J Rare Earths, 2013, 31(3): 247-250.

    13. [13]

      [13] 卢春山. 负载型过渡金属氮化物制备和催化性能研究[D]. 浙江: 浙江工业大学, 2003. (LU Chun-shan. Preapration and catalytic properties of supported bimetallic nitrides[D]. Zhejiang: Zhejiang University of Technology, 2003.)

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    8. [8]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    10. [10]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    11. [11]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    15. [15]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    18. [18]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

Metrics
  • PDF Downloads(0)
  • Abstract views(980)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return