Citation: YAN Chun-di, CHENG Hao, WANG Shu-dong. Effects of copper content in Cu-SAPO-34 on its catalytic performance in NH3-SCR of NOx[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 743-750. shu

Effects of copper content in Cu-SAPO-34 on its catalytic performance in NH3-SCR of NOx

  • Corresponding author: WANG Shu-dong, 
  • Received Date: 9 January 2014
    Available Online: 27 March 2014

  • A series of Cu-SAPO-34 catalysts with various Cu contents were prepared by using different kinds of ammonium salts and adjusting Cu2+ ion exchange time; their catalytic performance and hydrothermal stability in selectively catalytic reduction of NOx with NH3 (NH3-SCR) were investigated. The results showed that Cu2+ ions are the predominant active sites in Cu-SAPO-34 for the NH3-SCR of NOx. With the increase of Cu content, the activity of Cu-SAPO-34 at low temperature is increased at first and then decreased. With a Cu content of 2.37%, the Cu-SAPO-34 catalyst exhibits the best low temperature activity; over it, the conversion of NOx is higher than 80.0% at 185 ℃ and may even reach 98.7%. ICP, H2-TPR, FT-IR and NH3-TPD results illustrated that the introduction of Cu into SAPO-34 leads to an addition of new adsorption sites for ammonia, an increase of Lewis acid sites and a decrease of the adsorption strength of NH3 on SAPO-34. However, a further increase of Cu loading (e.g. 2.90%) results in a decrease of Cu-SAPO-34 activity in SCR, which may be ascribed to the replacement of H in Si-OH-Al by Cu2+ that hinders the adsorption, storage and migration of NH3 in NH3-SCR. In addition, excessive loading of Cu is probably detrimental to the hydrothermal stability of the Cu-SAPO-34 catalyst.
  • 加载中
    1. [1]

      [1] 司知蠢, 翁端, 吴晓东, 栗国, 李佳. 中国温室气体减排与选择性催化还原脱硝材料[J]. 科技导报, 2009, 27(5): 87-95. (SI Zhi-chun, WENG Duan, WU Xiao-dong, LI Guo, LI Jia. Green house gas emission reduction and materials for selective catalytic reduction of NOx in China[J]. Sience & Technology Review, 2009, 27(5): 81-95.)

    2. [2]

      [2] FICKEL D W, D'ADDIO E, LAUTERBACH J A, LOBO R F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B: Environ, 2011, 102(3): 441-448.

    3. [3]

      [3] ANDERSEN P J, BAILIE J E, CASCI J L, CHEN H-Y, FEDEYKO J M, FOO R K S, RAJARAM R R. Transition mental/zeolite SCR catalysts: WO, 2008/132452 A2[P]. 2008-11-06.

    4. [4]

      [4] BULL I, XUE W M, BURK P, BOORSE R S, JAGLOWSKI W M, KOERMER G S, MOINI A, PATCHETT J A, DETTLING J C, CAUDLE M T. Copper CHA zeolite catalysts: US, 7601662 B2. 2009-10-13.

    5. [5]

      [5] BULL I, KOERMER G S, MOINI A, UNVERRICHT S. Catalysts, systems and methods utilizing non-zeolite metal-containing molecular sieves having the CHA crystal structure: WO, 2009099937 A1. 2009-08-13.

    6. [6]

      [6] WANG J, YU T, WANG X, QI G, XUE J, SHEN M, LI W. The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR[J]. Appl Catal B: Environ, 2012, 127: 137-147.

    7. [7]

      [7] WANG L, LI W, QI G, WENG D. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J]. J Catal, 2012, 289: 21-29.

    8. [8]

      [8] XUE J, WANG X, QI G, WANG J, SHEN M, LI W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature[J]. J Catal, 2013, 297: 56-64.

    9. [9]

      [9] DEKA U, LEZCANO-GONZALEZ I, WARRENDER S J, PICONE A L, WRIGHT P A, WECKHUYSEN B M, BEALE A M. Changing active sites in Cu-CHA catalysts: DeNOx selectivity as a function of the preparation method[J]. Micropor Mesopor Mater, 2013, 166: 144-152.

    10. [10]

      [10] VENNESTRM P N R, KATERINOPOULOU A, TIRUVALAM R R, KUSTOV A, MOSES P G, CONCEPCION P, CORMA A. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3[J]. ACS Catal, 2013, 3(9): 2158-2161.

    11. [11]

      [11] WANG L, GAUDET J R, LI W, WENG D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. J Catal, 2013, 306: 68-77.

    12. [12]

      [12] WANG D, ZHANG L, KAMASAMUDRAM K, EPLING W S. In situ-DRIFTS study of relective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34[J]. ACS Catal, 2013, 3(5): 871-881.

    13. [13]

      [13] 刘中民, 蔡光宇, 何长青, 杨立新, 王作周, 罗静慎, 常彦君, 石仁敏, 姜增全, 孙承林. 一种以三乙胺为模板剂的合成硅磷铝分子筛及其制备: 中国, 1088483A[P]. 1994-06-29. (LIU Zhong-min, CAI Guang-yu, HE Chang-qing, YANG Li-xin, WANG Zuo-zhou, LUO Jing-shen, CHANG Yan-jun, SHI Ren-min, JIANG Zeng-quan, SUN Cheng-lin. The synthesis of silicon-aluminum phosphate molecular sieve with triethylamine as the template and its preparation: CN, 1088483A[P]. 1994-06-29.)

    14. [14]

      [14] 于铁. Si/P/Al比例对Cu/SAPO-34催化剂SCR性能的影响[D]. 天津: 天津大学, 2012. (YU Tie. The effect of Si/P/Al ratios to the SCR activity over Cu/SAPO-34 catalysts[D]. Tianjin: Tianjin University, 2012.)

    15. [15]

      [15] GAO F, WALTER E D, KARP E M, LUO J, TONKYN R G, KWAK J H, SZANYI J, PEDEN C H F. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal, 2013, 300: 20-29.

    16. [16]

      [16] 徐如人, 庞文琴, 屠昆岗. 沸石分子筛的结构与合成[M]. 长春: 吉林大学出版社, 1987. (XU Ru-ren, PANG Wen-qin, TU Kun-gang. Zeolite molecular sieves structure and synthesis[M]. Changchun: Jilin University Press, 1987.)

    17. [17]

      [17] 何长青, 刘中民, 蔡光宇, 辛勤, 应品良. SAPO-34分子筛表面酸性质的研究[J]. 分子催化, 1996, 10(1): 48-54. (HE Chang-qing, LIU Zhong-min, CAI Guang-yu, XIN Qin, YING Pin-liang. Investigation on the surface acidity of SAPO-34 molecular sieve[J]. Journal of Molecular Catalysis (China), 1996, 10(1): 48-54.)

    18. [18]

      [18] ZAMADICS M, CHEN X, KEVAN L. Study of Cu(Ⅱ) Location and adsorbate interaction in CuH-SAPO-34 molecular sieve by electron sp4 resoname and etectron spin echo modulath spectroscopies[J]. J Phys Chem, 1992, 96(6): 2652-2657.

    19. [19]

      [19] ZAMADICS M, CHEN X, KEVAN L. Solid-state ion exchange in H-SAPO-34: Electron spin resonance and electron spin echo modulation studies of Cu(Ⅱ) location and adsorbate interaction[J]. J Phys Chem, 1992, 96(13): 5488-5491.

    20. [20]

      [20] SCHWIDDER M, KUMAR M S, BENTRUP U, PÉREZ-RAMıÍREZ J, BRÜCKNER A, GRÜNERT W. The role of Brnsted acidity in the SCR of NO over Fe-MFI catalysts[J]. Micropor Mesopor Mater, 2008, 111(1): 124-133.

    21. [21]

      [21] MA L, CHENG Y, CAVATAIO G, MCCABE R W, FU L, LI J. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chem Eng J, 2013, 225: 323-330.

  • 加载中
    1. [1]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    14. [14]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    15. [15]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    18. [18]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    19. [19]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    20. [20]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(0)
  • Abstract views(437)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return