Citation: LIU Lai-shuan, PEI Tian-jie, AN Wen-ping, LI Yu, LI Nan. Effect of the chelating agent on the hydrodesulfurization activity of extruded Co-Mo/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 738-742. shu

Effect of the chelating agent on the hydrodesulfurization activity of extruded Co-Mo/Al2O3 catalysts

  • Corresponding author: LIU Lai-shuan, 
  • Received Date: 5 December 2013
    Available Online: 19 March 2014

    Fund Project: 山西省科技重大专项(20111101013) (20111101013)山西省自然科学基金(2009011011-4)。 (2009011011-4)

  • γ-Al2O3 monolith support with high surface area and wide pore size distribution was obtained by extruding the mixture of pseudo boehmite and organic additives, as well as subsequent drying and calculation; a series of Co-Mo catalysts with ca. 8% molybdenum and 2% cobalt were prepared through co-impregnation of the support with solutions of ammonium heptamolybdate, cobalt nitrate and the chelating agent of citric acid (CA), oxalic acid (OA) and ethylenediamine tetraacetic acid (EDTA). The Co-Mo/Al2O3 catalysts were characterized by nitrogen sorption, XRD and H2-TPR; the effect of chelating agents on their textural properties and activity in hydrodesulphurisation (HDS) of a commercial crude benzol was investigated. The results indicated that the catalyst precursors were mostly deposited over the surface of the mesopores with a diameter between 3 and 10 nm; the addition of chelating agent results in a high dispersion of Co-Mo species on the alumina support. The H2-TPR results revealed that the addition of CA is able to improve the catalyst reducibility and shift the reduction temperature of Mo6+ to lower temperature. For the HDS reaction of the real-feedstock in a down-flow tubular reactor under 300 ℃, 3.0 MPa, a liquid hourly space velocity (LHSV) of 2 h-1, and a hydrogen/oil volume ratio of 600, the removal of thiophene sulfur reaches 99.9% over the CA-promoted Co-Mo/Al2O3 catalyst.
  • 加载中
    1. [1]

      [1] 齐和日玛, 李会峰, 袁蕙, 张韫宏, 徐广通. Al2O3性质对加氢脱硫催化剂Co-Mo/Al2O3活性相形成的影响[J]. 催化学报, 2011, 32(2): 240-249. (Qiherima, LI Hui-feng, YUAN Hui, ZHANG Yun-hong, XU Guang-tong. Effect of alumina supports on the formation of active phase of selective hydrodesulfurization catalysts Co-Mo/Al2O3[J]. Chinese Journal of Catalysis, 2011, 32(2): 240-249.)

    2. [2]

      [2] 李广慈, 赵会吉, 赵瑞玉, 刘晨光. 不同扩孔方法对催化剂载体氧化铝孔结构的影响[J]. 石油炼制及化工, 2010, 41(1): 49-53. (LI Guang-ci, ZHAO Hui-ji, ZHAO Rui-yu, LIU Chen-guang. Effects of various pore-enlarging methods on the pore structure of alumina catalyst support[J]. Petroleum Processing and Petrochemicals, 2010, 41(1): 49-53.)

    3. [3]

      [3] 聂红, 李明丰, 高晓东, 李大东. 石油炼制中的加氢催化剂和技术[J]. 石油学报(石油加工), 2010, 10(S): 77-81. (NIE Hong, LI Ming-feng, GAO Xiao-dong, LI Da-dong. Hydrogenation catalyst and technology in petroleum processing[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2010, 10(S): 77-81.)

    4. [4]

      [4] 李宇慧, 冯丽娟, 王景刚, 徐康文, 李春虎. MoO3/A12O3介孔催化剂在柴油氧化脱硫中的应用[J]. 石油学报(石油加工), 2011, 27(6): 878-883. (LI Yu-hui, FENG Li-juan, WANG Jing-gang, XU Kang-wen, LI Chun-hu. Oxidative desulfurization of diesel oil by mesoporous catalyst MoO3/Al2O3[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2011, 27(6): 878-883.)

    5. [5]

      [5] LIU F, XU S P, CHI Y W, XUE D F. A novel alumina-activated carbon composite supported NiMo catalyst for hydrodesulfurization of dibenzothiophene[J]. Catal Commun, 2011, 12(6): 521-524.

    6. [6]

      [6] 周同娜, 尹海亮, 柳云骐, 韩姝娜, 柴永明, 刘晨光. 磷含量对NiMo/γ-Al2O3催化剂活性相结构的影响[J]. 燃料化学学报, 2010, 38(1): 69-74. (ZHOU Tong-na, YIN Hai-liang, LIU Yun-qi, HAN Shu-na, CHAI Yong-ming, LIU Chen-guang. Effect of phosphorus content on the active phase structure of NiMo/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 69-74.)

    7. [7]

      [7] INAMURA K, UCHIKAWA K, MATSUDA S, AKAI Y. Preparation of active HDS catalysts by controlling the dispersion of active species[J]. Appl Surf Sci, 1997, 121(1): 468-475.

    8. [8]

      [8] 倪月琴, 臧璟龄, 张吉仁. 加氢脱氮催化剂活性相的表征——Ⅰ. 硫化Mo/Al2O3的表面和化学结构[J]. 催化学报, 1991, 12(1): 14-19. (NI Yue-qin, ZANG Jing-ling, ZHANG Ji-ren. Characterization of active phase of hydrode-nitrogenation catalyst——Ⅰ. The surface and chemical structure of sulfided Mo/Al2O3[J]. Chinese Journal of Catalysis, 1991, 12(1): 14-19.)

    9. [9]

      [9] 赵振兴, 夏春谷, 薛群基, 李殿卿, 刘鹏程. 球形SiO2-Al2O3的制备、结构和性能[J]. 物理化学学报, 2007, 23(4): 549-553. (ZHAO Zhen-xing, XIA Chun-gu, XUE Qun-ji, LI Dian-qing, LIU Peng-cheng. Preparation, structure and properties of spherical SiO2-Al2O3 composites[J]. Acta Physico-Chimica Sinica, 2007, 23(4): 549-553.)

    10. [10]

      [10] QU L L, ZHANG W P, KOOYMAN P J, PRINS R. MAS NMR, TPR and TEM studies of the interaction of Ni Mo with alumina and silicaalumina supports[J]. J Catal, 2003, 215(1): 7-13.

    11. [11]

      [11] HENKER M, WENDLANDT K, VALYON J, BRONMANN P. Structure of MoO3/A12O3-SiO2 catalysts[J]. Appl Catal, 1991, 69(1): 205-220.

    12. [12]

      [12] MARZARI A J, RAJAGOPAL S, MIRANDA R. Bifunctional mechanism of pyridine hydrodenitrogenation[J]. J Catal, 1995, 156(2): 255-264.

    13. [13]

      [13] VAKROS J, KORDULIS C, LYCOURGHIOTIS A. Cobalt oxide supported γ-alumina catalyst with very high active surface area prepared by equilibrium deposition filtration[J]. Langmuir, 2002, 18(2): 417-422.

    14. [14]

      [14] RAJAGOPAL S, MARINI H J, MARZARI J A, MIRANDA R. Silica alumina supported acidic molybdenum catalysts TPR and XRD characterization[J]. J Catal, 1994, 147(2): 417-428.

    15. [15]

      [15] ZHAO H B, ZHANG Z S, ZHANG J, RING Z. Aqueous interfacial chemistry in the catalyst preparation of NiMo/Al2O3 system by EDTA-containing impregnation[J]. Energy Fuels, 2006, 20(5): 1822-1827.

    16. [16]

      [16] RINALDI N, YOSHIOKA M, KUBOTA T, OKAMOTO Y. Hydrodesulfurization activity of Co-Mo/Al2O3 catalysts prepared with citric acid: Post-treatment of calcined catalysts with high Mo loading[J]. J Jpn Petrol Inst, 2010, 53(5): 292-302.

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    17. [17]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

Metrics
  • PDF Downloads(0)
  • Abstract views(344)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return