Citation: SONG Hua, WANG Zi-Dong, DAI Min, SONG Hua-Lin, WAN Xia, LI Feng. Preparation of Ni2P catalyst at low reduction temperature and its HDS performance[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 733-737. shu

Preparation of Ni2P catalyst at low reduction temperature and its HDS performance

  • Corresponding author: SONG Hua,  SONG Hua-Lin, 
  • Received Date: 8 December 2013
    Available Online: 26 March 2014

    Fund Project: 国家自然科学基金(21276048) (21276048)黑龙江省自然科学基金(ZD201201)。 (ZD201201)

  • The Ni2P/MCM-41 catalysts was prepared at low reduction temperature by temperature programmed reduction. The catalyst was characterized by H2-TPR, TG-DTG, XRD, BET, and XPS. The effects of reduction temperature on formation of the active Ni2P phase and HDS performance of the catalysts were studied. The results showed that a pure Ni2P phase can be obtained with samples reduced at low reduction temperature range of 210~390 ℃. The catalyst obtained at reduction temperature of 390 ℃ exhibited the highest HDS activity. At a reaction temperature of 340 ℃, pressure of 3.0 MPa, H2/oil volume ratio of 500, and weight hourly space velocity (WHSV) of 2.0 h-1, the DBT HDS conversion reached to 99.0%.
  • 加载中
    1. [1]

      [1] 宋华, 代敏, 宋华林. Ni2P加氢脱硫催化剂[J]. 化学进展, 2012, 24(5): 43-47. (SONG Hua, DAI Min, SONG Hua-lin. Ni2P catalyst for hydrodesulfurization[J]. Progress in Chemistry, 2012, 24(5): 43-47.)

    2. [2]

      [2] KORANYI T I. Phosphorus promotion of Ni(Co)-containing Mo-free catalysts in thiophene hydrodesulfurization[J]. Appl Catal A: Gen, 2003, 239(1/2): 253-267.

    3. [3]

      [3] 余夕志, 王远强, 陈长林, 徐南平, 王延儒. Ni2P/TiO2的制备及其对苯加氢反应的催化性能[J]. 燃料化学学报, 2006, 34(1): 100-104. (YU Xi-zhi, WANG Yuan-qiang, CHEN Chang-lin, XU Nan-ping, WANG Yan-ru. Preparation of Ni2P/TiO2 catalyst and its reactivity for benzene hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2006, 34(1): 100-104.)

    4. [4]

      [4] SEO H R, CHO K S, LEE Y K. Formation mechanisms of Ni2P nanocrystals using XANES and EXAFS spectroscopy[J]. Mater Sci Eng: B, 2011, 176(2): 132-140.

    5. [5]

      [5] SONG L M, ZHANG S J, WEI Q W. A new route for synthesizing nickel phosphide catalysts with high hydrodesulfurization activity based on sodium dihydrogenphosphite[J]. Catal Commun, 2011, 12(12): 1157-1160.

    6. [6]

      [6] 刘理华, 刘书群, 柴永明, 刘晨光. 磷化镍催化剂的制备机理及其加氢脱氮性能[J]. 燃料化学学报, 2013, 41(3): 335-340. (LIU Li-hua, LIU Shu-qun, CHAI Yong-ming, LIU Chen-guang. Preparation mechanism and hydrodenitrogenation performance of nickel phosphide catalyst[J]. Journal of Fuel Chemistry and Technology, 2013, 41(3): 335-340.)

    7. [7]

      [7] SONG L M, ZHANG S J. A versatile route to synthesizing bulk and supported nickel phosphides by thermal treatment of a mechanical mixing of nickel chloride and sodium hypophosphite[J]. Powder Technol, 2011, 208(3): 713-716.

    8. [8]

      [8] GUAN Q X, LI W, ZHANG M H, TAO K Y. Alternative synthesis of bulk and supported nickel phosphide from the thermal decomposition of hypophosphites[J]. J Catal, 2009, 263(1): 1-3.

    9. [9]

      [9] CECILIA J A, INFANTES-MOLINA A, RODRIGUEZ-CASTELLON E, JIMENEZ-LOPEZ A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene[J]. J Catal, 2009, 263(1): 4-15.

    10. [10]

      [10] MELENDEZ-ORTIZ H I, GARCIA-CERDA L A, OLIVARES-MALDONADO Y, CASTRUITA G, MERCADO-SILVA J A, PERERA-MERCADO Y A. Preparation of spherical MCM-41 molecular sieve at room temperature: Influence of the synthesis conditions in the structural properties[J]. Ceram Int, 2012, 38(8): 6353-6358.

    11. [11]

      [11] GUAN J, WANG Y, QIN M L, YANG Y, LI X, WANG A J. Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma[J]. J Solid State Chem, 2009, 182(6): 1550-1555.

    12. [12]

      [12] CHO K S, SEO H R, LEE Y K. A new synthesis of highly active Ni2P/Al2O3 catalyst by liquid phase phosphidation for deep hydrodesulfurization[J]. Catal Commun, 2011, 12(6): 470-474.

    13. [13]

      [13] SONG H, DAI M, GUO Y T, ZHANG Y J. Preparation of composite TiO2-Al2O3 supported nickel phosphide hydrotreating catalysts and catalytic activity for hydrodesulfurization of dibenzothiophene[J]. Fuel Process Technol, 2012, 96: 228-236.

    14. [14]

      [14] BERHAULT G, AFANASIEV P, LOBOUE H, GEANTET C, CSERI T, PICHON C, GUILLOT-DEUDON C, LAFOND A. In situ XRD, XAS, and magnetic susceptibility study of the reduction of ammonium nickel phosphate NiNH4PO4·H2O into nickel phosphide[J]. Inorg Chem, 2009, 48(7): 2985-2992.

    15. [15]

      [15] ELICHE-QUESADA D, MERIDA-ROBLES J, MAIRELES-TORRES P, RODRIGUEZ-CASTELLON E, BUSCA G, FINOCCHIO E, JIMENEZ-LOPEZ A. Effects of preparation method and sulfur poisoning on the hydrogenation and ring opening of tetralin on NiW/zirconium-doped mesoporous silica catalysts[J]. J Catal, 2003, 220(2): 457-467.

    16. [16]

      [16] KUHN J N, LAKSHMINARAYANAN N, OZKAN U S. Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets[J]. J Mol Catal A: Chem, 2008, 282(1/2): 9-21.

    17. [17]

      [17] KANAMA D, OYAMA S T, OTANI S, COX D F. Ni2P (0001) by XPS[J]. Surf Sci Spectra, 2001, 8(3): 220-224.

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    5. [5]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    15. [15]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    16. [16]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    17. [17]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    18. [18]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    19. [19]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    20. [20]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

Metrics
  • PDF Downloads(0)
  • Abstract views(646)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return