Citation: GUO Peng-fei, JIN Guo-qiang, GUO Cong-xiu, WANG Ying-yong, TONG Xi-li, GUO Xiang-yun. Effects of Yb2O3 promotor on the performance of Ni/SiC catalysts in CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 719-726. shu

Effects of Yb2O3 promotor on the performance of Ni/SiC catalysts in CO2 reforming of CH4

  • Corresponding author: JIN Guo-qiang, 
  • Received Date: 6 March 2014
    Available Online: 4 May 2014

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201405)。 (973计划,2011CB201405)

  • Ni/SiC and Ni-Ybx/SiC (x=2%, 4%, 6%,10%) catalysts were prepared by the impregnation method, and the performances of catalysts in the carbon dioxide reforming of methane were studied in a fixed-bed reactor.The catalysts were characterized by BET, ICP-AES, XRD, H2-TPR, TG-DTA, XPS and TEM techniques.The experimental results indicate that the appropriate addition amount of Yb is 4% to 6%.Ni-Yb4/SiC and Ni-Yb6/SiC catalysts exhibit excellent catalytic activity and stability at 800 ℃, and the conversion of CH4 and CO2 can be maintained over 90% during the 100 h testing. Yb2O3 promotor can inhibit the growth of nickel nanoparticles and reduce the amount of carbon deposition,therefore Ni-Yb/SiC catalysts show stable activity in the continuous reforming reaction.
  • 加载中
    1. [1]

      [1] FAN M S, ABDULLAH A Z, BHATIA S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas[J]. ChemCatChem, 2009, 1(2): 192-208.

    2. [2]

      [2] 王莉, 敖先权, 王诗翰. 甲烷与二氧化碳催化重整制取合成气催化剂[J]. 化学进展, 2012, 24(9): 1696-1706. (WANG Li, AO Xian-quan, WANG Shi-han. Catalysts for carbon dioxide catalytic reforming of methane to synthesis gas[J]. Progress in Chemistry, 2012, 24(9): 1696-1706.)

    3. [3]

      [3] FISCHER F, TROPSCH H. Conversion of methane into hydrogen and carbon monoxide[J]. BrennstChem, 1928, 9: 39-46.

    4. [4]

      [4] BRADFORD M C J, VANNICE M A. CO2 reforming of CH4 over supported Ru catalysts[J]. J Catal, 1999, 183(1): 69-75.

    5. [5]

      [5] WANG H Y, RUCKENSTEIN E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support[J]. Appl Catal A: Gen, 2000, 204(1): 143-152.

    6. [6]

      [6] YAMAGUCHI A, IGLESIA E. Catalytic activation and reforming of methane on supported palladium clusters[J]. J Catal, 2010, 274(1): 52-63.

    7. [7]

      [7] WEI J M, GLESIA E. Structural and mechanistic requirements for methane activation and chemical conversion on supported iridium clusters[J]. Angew Chem Int Ed, 2004, 43(28): 3685-3688.

    8. [8]

      [8] PANT B, STAGG-WILLIAMS S M. Investigation of the stability of Pt/LaCoO3 during high temperature reforming reactions[J]. Catal Commun, 2004, 5(6): 305-309.

    9. [9]

      [9] ROSTRUPNIELSEN J R, HANSEN J H B. CO2-reforming of methane over transition metals[J]. J Catal, 1993, 144(1): 38-49.

    10. [10]

      [10] 徐军科, 任克威, 王晓蕾, 周伟, 潘相敏, 马建新. 甲烷干重整制氢研究进展[J]. 天然气化工, 2008, 33(3): 53-60. (XU Jun-ke, REN Ke-wei, WANG Xiao-lei, ZHOU Wei, PAN Xiang-min, Ma Jian-xin. Progress in studies on dry-reforming of methane to hydrogen[J]. Natural Gas Chemical Industry, 2008, 33(3): 53-60.)

    11. [11]

      [11] 孙楠楠, 闻霞, 王峰, 彭伟才, 肖福魁, 魏伟, 孙予罕, 李海. 反应条件对Ni-CaO-ZrO2催化剂上CH4-CO2重整反应及积炭的影响[J]. 燃料化学学报, 2012, 40(3): 345-349. (SUN Nan-nan, WEN Xia, WANG Feng, PENG Wei-cai, XIAO Fu-kui, WEI Wei, SUN Yu-han, LI Hai. Influences of reaction conditions on the CH4-CO2 reforming and coking properties of a Ni-CaO-ZrO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 345-349.)

    12. [12]

      [12] LIU H T, LI S Q, ZHANG S B, CHEN L, ZHOU G J, WANG J M, WANG X L. Catalytic performance of monolithic foam Ni/SiC catalyst in carbon dioxide reforming of methane to synthesis gas[J]. Catal Lett, 2008, 120(1/2): 111-115.

    13. [13]

      [13] SUNW Z, JIN G Q, GUO X Y. Partial oxidation of methane to syngas over Ni/SiC catalysts[J]. Catal Commun, 2005, 6(2): 135-139.

    14. [14]

      [14] 职国娟, 王英勇, 靳国强, 郭向云. 镍盐前驱体对CO2甲烷化Ni/SiC催化剂性能的影响[J]. 天然气化工, 2012, 37(5): 10-14. (ZHI Guo-juan, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Effect of nickel precursors on catalytic performance of Ni/SiC catalysts for CO2 methanation[J]. Natural Gas Chemical Industry, 2012, 37(5): 10-14.)

    15. [15]

      [15] YANG R Q, XING C, LV C X, SHI L, TSUBAKI N. Promotional effect of La2O3 and CeO2 on Ni/gamma-Al2O3 catalysts for CO2 reforming of CH4[J]. Appl Catal A: Gen, 2010, 385(1/2): 92-100.

    16. [16]

      [16] LI X C, WU M, LAI Z H, HE F. Studies on nickel-based catalysts for carbon dioxide reforming of methane[J]. Appl Catal A: Gen, 2005, 290(1/2): 81-86.

    17. [17]

      [17] BARROSO-QUIROGA M M, CASTRO-LUNA A E. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane[J]. Int J Hydrogen Energy, 2010, 35(11): 6052-6056.

    18. [18]

      [18] AMAIN M H, MANTRI K, NEWNHAM J, TARDIO J, BHARGAVA S K. Highly stable ytterbium promoted Ni/gamma-Al2O3 catalysts for carbon dioxide reforming of methane[J]. Appl Catal B: Environ, 2012, 119-120: 217-226.

    19. [19]

      [19] JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous Mesoporous Mater, 2003, 60(1/3): 207-212.

    20. [20]

      [20] GARCIA-VARGAS J M, VALVERDE J L, DE LUCAS-CONSUEGRA A, GOMEZ-MONEDERO B, SANCHEZ P, DORADO F. Precursor influence and catalytic behaviour of Ni/CeO2 and Ni/SiC catalysts for the tri-reforming process[J]. Appl Catal A: Gen, 2012, 431-432: 49-56.

    21. [21]

      [21] CONTARINI S, HOWLETT S P, RIZZO C, DE ANGELIS B A. XPS study on the dispersion of carbon additives in silicon carbide powders[J]. Appl Surf Sci, 1991, 51(3/4): 177-183.

    22. [22]

      [22] YAMAMOTO T, MATSUYAMA T, TANAKA T, FUNABIKI T, YOSHIDA S. Silica-supported ytterbium oxide characterized by spectroscopic methods and acid-catalyzed reactions[J]. J Mol Catal A: Chem, 2000, 155(1/2): 43-58.

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    8. [8]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    20. [20]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

Metrics
  • PDF Downloads(0)
  • Abstract views(458)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return