Citation: P. Nikparsa, A. A. Mirzaei, H. Atashi. Effect of reaction conditions and kinetic study on the Fischer-Tropsch synthesis over fused Co-Ni/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 710-718. shu

Effect of reaction conditions and kinetic study on the Fischer-Tropsch synthesis over fused Co-Ni/Al2O3 catalyst

  • Corresponding author: A. A. Mirzaei, 
  • Received Date: 11 December 2013
    Available Online: 9 April 2014

  • Co-Ni/Al2O3 catalyst was prepared by the fusion method and used in Fischer-Tropsch synthesis (FTS). The catalysts were characterized by means of nitrogen sorption and scanning electron microscopy. The effect of some reaction conditions such as temperature, pressure and H2/CO feed ratio on the catalytic performance of Co-Ni/Al2O3 in CO hydrogenation was investigated in a fixed-bed reactor. The results indicate that the optimum reaction conditions are 250 ℃, 0.3 MPa, H2/CO feed ratio of 2.0, and GHSV of 3 000 h-1. Kinetically, the reaction rate was correlated with the Langmuir-Hinshelwood-Hougen-Watson type models. The activation energy for the best fitted model is 88.41 kJ/mol, suggesting that the intra-particle mass transport is not significant.
  • 加载中
    1. [1]

      [1] 万海军, 吴宝山, 李廷真, 陶智超, 安霞, 相宏伟, 李永旺. 结构助剂SiO2、Al2O3对铁基催化剂浆态床F-T合成性能的影响[J]. 燃料化学学报, 2007, 35(5): 589-594. (WAN Hai-jun, WU Bao-shan, LI Ting-zhen, TAO Zhi-chao, AN Xia, XIANG Hong-wei, LI Yong-wang. Effects of SiO2 and Al2O3 on performances of iron-based catalysts for slurry Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 589-594.)

    2. [2]

      [2] MIRZAEI A A, HABIBPOUR R, FAIZI M, KASHI E. Effect of different supports and promoters upon the structure and morphology of precursors and catalysts[J]. Appl Catal A: Gen, 2006, 301(2): 272-283.

    3. [3]

      [3] 白亮, 刘利军, 李小蓓, 张志新, 相宏伟, 李永旺, 韩怡卓. 工业固定床Fe-Cu-K催化剂浆态床F-T合成适应性研究[J]. 燃料化学学报, 2005, 33(2): 211-217. (BAI Liang, LIU Li-jun, LI Xiao-bei, ZHANG Zhi-xin, XIANG Hong-wei, LI Yong-wang, HAN Yi-zhuo. Investigation on the adaptability of an industrial fixed-bed Fe-Cu-K catalyst to slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2005, 33(2): 211-217.)

    4. [4]

      [4] TIHAY F, ROGER A C, KIENNEMANN A, POURROY G. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catal Today, 2000, 58(4): 263-269.

    5. [5]

      [5] FEYZI M, MIRZAEI A A. Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1435-1443.

    6. [6]

      [6] BESSEL S. Support effects in cobalt-based Fischer-Tropsch catalysts[J]. Appl Catal A: Gen, 1993, 96(2): 253-268.

    7. [7]

      [7] OUKACI R, SINGLETON A H, GOODWIN J G. Comparison of patented Co F-T catalysts using fixed-bed and slurry bubble column reactors[J]. Appl Catal, 1999, 186(1): 129-144.

    8. [8]

      [8] ARSALANFAR M, MIRZAEI A A, ATASHI H, BOZORGZADEH H R, VAHID S, ZARE A. An investigation of the kinetics and mechanism of Fischer-Tropsch synthesis on Fe-Co-Mn supported catalyst[J]. Fuel Process Technol, 2012, 96: 150-159.[JP]

    9. [9]

      [9] VAN STEEN E, SCHULZ H. Polymerisation kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts[J]. Appl Catal A: Gen, 1999, 186(1/2): 309-320.

    10. [10]

      [10] DAS T K, CONNER W A, LI J, JACOBS G, DRY M E, DAVIS B H. Fischer-Tropsch synthesis: Kinetics and effect of water for a Co/SiO2 catalyst[J]. Energy Fuels, 2005, 19(4): 1430-1439.

    11. [11]

      [11] YATES I C, SATTERFIELD C N. Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst[J]. Energy Fuels, 1991, 5(1): 168-173.

    12. [12]

      [12] ZENNARO R, TAGLIABUE M, BARTHOLOMEW C H. Kinetics of Fischer-Tropsch synthesis on titania-supported cobalt[J]. Catal Today, 2000, 58(4): 309-319.

    13. [13]

      [13] VISCONTI C G, TRONCONI E, LIETTI L, ZENNARO R, FORZATTI P. Development of a complete kinetic model for the Fischer-Tropsch synthesis over Co/Al2O3 catalysts[J]. Chem Eng Sci, 2007, 62(18/20): 5038-5043.

    14. [14]

      [14] YANG J, LIU Y, CHANG J, WANG Y, BAI L, XU L, XIANG H, LI Y, ZHONG B. Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst[J]. Ind Eng Chem Res, 2003, 42(21): 5066-5090.

    15. [15]

      [15] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev, 2007, 107(5): 1692-1744.

    16. [16]

      [16] FISCHER F, TROPSCH H. The synthesis of petroleum at atmospheric pressures from gasification products of coal[J]. Brennstoff-Chem, 1926, 7: 97-104.

    17. [17]

      [17] STORCH H H, GOLUMBIC N, ANDERSON R B. The Fischer-Tropsch synthesis and related synthesis[M]. New York: John Wiley, 1951.

    18. [18]

      [18] ZHANG H B, SCHRADER G L. Characterization of NH3/Fe catalytic systems by laser Raman spectroscopy[J]. J Catal, 1985, 95: 325-332.

    19. [19]

      [19] TENG B T, CHANG J, ZHANG C H, CAO D B, YANG J, LIU Y, GUO X H, XIANG H W, LI Y W. A comprehensive kinetics model of Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst[J]. Appl Catal A: Gen, 2006, 301(1): 39-50.

    20. [20]

      [20] BECHARA R, BALLOY D, DAUPHIN J Y, GRIMBLOT J. Influence of the characteristics of[WTBZ]γ[WTB1]-aluminas on the dispersion and the reducibility of supported cobalt catalysts[J]. Chem Mater, 1992, 11: 1703-1711.

    21. [21]

      [21] BERCIC G, LEVEC J. Intrinsic and global reaction rate of methanol dehydration over[WTBZ]γ[WTB1]-A12O3 pellets[J]. Ind Eng Chem Res, 1992, 31(4): 1035-1040.

    22. [22]

      [22] KEYSER M J, EVERSON R C, ESPINOZA R L. Fischer-Tropsch kinetic studies with cobalt-manganese oxide catalysts[J]. Ind Eng Chem Res, 2000, 39: 48-54.

    23. [23]

      [23] SARI A, ZAMANI Y, TAHERI S A. Intrinsic kinetics of Fischer-Tropsch reactions over an industrial Co-Ru/[WTBZ]γ[WTB1]-Al2O3 catalyst in slurry phase reactor[J]. Fuel Process Technol, 2009, 90(10): 1305-1313.

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    3. [3]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    4. [4]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    10. [10]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    13. [13]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    14. [14]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    15. [15]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    16. [16]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    17. [17]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    18. [18]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    19. [19]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(388)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return