Citation: TANG Xiao-bo, NORITATSU Tsubaki, XIE Hong-juan, HAN Yi-zhuo, TAN Yi-sheng. Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 704-709. shu

Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis

  • Corresponding author: TAN Yi-sheng, 
  • Received Date: 27 February 2014
    Available Online: 27 April 2014

    Fund Project: 中国科学院山西煤炭化学研究所创新基金(2012SSTBZQT01)。 (2012SSTBZQT01)

  • A series of Cu-ZnO-based catalysts modified with Al, Zr, and Ce for the low-temperature methanol synthesis were prepared through co-precipitation and characterized by N2 sorption, H2-TPR, CO2-TPD, N2O titration, XRD, and high-resolution TEM; the effect of various modifiers and calcination temperature on their catalytic performance in methanol synthesis at 170 ℃ was investigated. The results showed that the Cu-ZnO-based catalyst modified with ZrO2, among the various modifiers, exhibits the highest activity. Meanwhile, a lower calcination temperature is propitious to get a higher Cu dispersion, a smaller Cu crystal size, and a higher low temperature activity for methanol synthesis; as a result, the uncalcined catalyst exhibits excellent catalytic performance, with a productivity of 106.02 g/(kg·h) and a selectivity of 87.04% to methanol.
  • 加载中
    1. [1]

      [1] 唐宏青, 相宏伟. 煤化工工艺技术评述与展望Ⅲ. 合成甲醇装置大型化与国产化[J]. 燃料化学学报, 2001, 29(3): 193-200. (TANG Hong-qing, XIANG Hong-wei. Perspectives on R&D in coal chemical industry Ⅲ. Setup of domestic large-scale installation for methanol production[J]. Coal Conversion, 2001. 29(3): 193-200.)

    2. [2]

      [2] 储伟, 吴玉塘, 罗仕忠. 低温甲醇液相合成催化剂及工艺的研究进展[J]. 化学进展, 2001, 13(2): 128-134. (CHU Wei, WU Yu-tang, LUO Shi-zhong. Investigation on the catalysts and reaction process for the methanol synthesis at lower-temperature in liquid phase[J]. Progress in Chemistry, 2001, 13(2): 128-134.)

    3. [3]

      [3] GRAAF G H, SIJTSEMA P J J M, STAMSUIS E J, JOOSTEN G E H. On chemical equilibria in methanol synthesis[J]. Chem Eng Sci, 1990, 45(3): 769-770.

    4. [4]

      [4] SAPIENZA R S, SLEGEIR W A, DEVINDER M. Low temperature catalysts for methanol production: US, 4619946[P]. 1986-10-28.

    5. [5]

      [5] HU B S, FUJIMOTO K. Promoting behaviors of alkali compounds in low temperature methanol synthesis over copper-based catalyst[J]. Appl Catal B: Environ, 2010, 95(3/4): 208-216.

    6. [6]

      [6] HU B S, YAMAGUCHI Y, FUJIMOTO K. Low temperature methanol synthesis in alcohol solvent over copper-based catalyst[J]. Catal Commun, 2009, 10(12): 1620-1624.

    7. [7]

      [7] SHI L, YANG G H, TAO K, YONEYAMA Y, TAN Y S, TSUBAKI N. An introduction of CO2 conversion by dry reforming with methane and new route of low-temperature methanol synthesis[J]. Acc Chem Res, 2013, 46(8): 1838-1847.

    8. [8]

      [8] YANG R Q, YU X C, ZHANG Y, LI W Z, TSUBAKI N. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2[J]. Fuel, 2008, 87(4/5): 443-450.

    9. [9]

      [9] YANG R Q, FU L, ZHANG Y, TSUBAKI N. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter[J]. J Catal, 2004, 228(1): 23-35.

    10. [10]

      [10] TSUBAKI N, ITO M, FUJIMOTO K. A new method of low-temperature methanol synthesis[J]. J Catal, 2001, 197(1): 224-227.

    11. [11]

      [11] RHODES M D, BELL A T. The effects of zirconia morphology on methanol synthesis from CO and over catalysts: Part I. Steady-state studies[J]. J Catal, 2005, 233(1): 198-209.

    12. [12]

      [12] ARENA F A, MEZZATESTA G, ZAFARANA G, TRUNFIO G, FRUSTERI F, SPADARO L. Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO2 hydrogenation[J]. J Catal, 2013, 300: 141-151.

    13. [13]

      [13] GUO X M, MAO D S, LU G Z, WANG S, WU G S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction[J]. Catal Commun, 2011, 12(12): 1095-1098.

    14. [14]

      [14] GUO X M, MAO D S, LU G Z, WANG S, WU G S. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal, 2010, 271(2): 178-185.

    15. [15]

      [15] GAO P, LI F, XIAO F K, ZHAO N, SUN N N, WEI W, ZHONG L S, SUN Y H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013, 298(0):51-60.

    16. [16]

      [16] 郭宪吉, 陈炳义, 鲍改玲, 李利民. 不同制备方式的铜基甲醇合成催化剂的性质和结构研究[J]. 天然气化工, 2003, 28(2): 9-13. (GUO Xian-ji, CHEN Bing-yi, BAO Gai-ling, LI Li-min. Structure and properties of copper-based catalysts for methanol synthesis prepared by different precipitation methods[J]. Natural Gas Chemical Industry, 2003, 28(2): 9-13.)

    17. [17]

      [17] 张磊, 潘立卫, 倪长军, 孙天军, 赵生生, 王树东, 胡永康, 王安杰. 不同制备方式的铜基甲醇合成催化剂的性质和结构研究[J]. 催化学报, 2012, 33(12):1958-1964. (ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie. Effect of precipitation temperature on the performance of CuO/ZnO/CeO2/ZrO2 catalyst for methanol steam reforming[J]. Chinese Journal of Catalysis, 2012, 33(12): 1958-1964.)

    18. [18]

      [18] SHI L, ZENG L Y, JIN Y Z, WANG T J, TSUBAKI N. A sol-gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis[J]. Catal Sci Technol, 2012, 2(12): 2569-2577.

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    8. [8]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    9. [9]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    15. [15]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(0)
  • Abstract views(410)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return