Citation: LI Fu-chao, ZHANG Jiu-shun, YUAN Qi-min. Mechanism of methane formation in thermal and catalytic cracking of n-octane[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 697-703. shu

Mechanism of methane formation in thermal and catalytic cracking of n-octane

  • Corresponding author: YUAN Qi-min, 
  • Received Date: 15 October 2013
    Available Online: 17 February 2014

    Fund Project: 国家科技支撑计划(2012BAE05B01)。 (2012BAE05B01)

  • The thermal and catalytic cracking reactions of n-octane were carried out in a temperature range of 550~650 ℃ with low conversions (x<15%) in a pulse micro-reactor over quartz and ZRP zeolite. Reaction mechanism of methane formation was analyzed. The results showed that ethylene, propylene and n-butylene were primary products and four paths contributed to methane formation in thermal cracking of n-octane. At 600 ℃, dehydrogenation of terminal C-H bond in the chain attacked by methyl radical led to methane production. Due to higher activation energy of cleavage of terminal C-C bond in octyl radical formed via dehydrogenation of central C-C bond, only methane can form at higher temperature. Protolytic cracking was predominant with relatively remarkable yield of normal paraffin in catalytic cracking of n-octane over ZRP zeolite. Methane was produced by protolytic cracking route as well. By comparison of methane formation between thermal and protolytic cracking, it revealed that methane formed through protolytic cracking below 600 ℃ while thermal cracking dominated the selectivity of methane at higher reaction temperatures.
  • 加载中
    1. [1]

      [1] RICE F O. The thermal decomposition of oganic compounds from the standpoint of free radicals. I. Saturated hydrocarbons[J]. J Am Chem Soc, 1931, 53(5): 1959-1972.

    2. [2]

      [2] RICE F O. The thermal decomposition of organic compounds from the standpoint of free radicals. Ⅲ. The calculation of the products formed from paraffin hydrocarbons[J]. J Am Chem Soc, 1933, 55(7): 3035-3040.

    3. [3]

      [3] RICE F O, DOOLEY M D. The thermal decomposition of organic compounds from the standpoint of free radicals. IV. The dehydrogenation of paraffin hydrocarbons and the strength of the C-C bond[J]. J Am Chem Soc, 1933, 55(10): 4245-4247.

    4. [4]

      [4] KOSSIAKOFF A, RICE F O. Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals[J]. J Am Chem Soc, 1943, 65(4): 590-595.

    5. [5]

      [5] GREENSFELDER B, VOGE H, GOOD G. Catalytic cracking of pure hydrocarbons[J]. Ind Eng Chem, 1945, 37(12): 1168-1176.

    6. [6]

      [6] HAAG W, DESSAU R. Duality of mechanism for acid-catalyzed paraffin cracking[C]//Proceedings of the 8th International Congress on Catalysis, Berlin, 1984.

    7. [7]

      [7] YALURIS G, REKOSKE J E, APARICIO L M, MADON R J, DUMESIC J A. Isobutane cracking over Y-zeolites: I. Development of a kinetic-model[J]. J Catal, 1995, 153(1): 54-64.

    8. [8]

      [8] YALURIS G, REKOSKE J E, APARICIO L M, MADON R J, DUMESIC J A. Isobutane cracking over Y-zeolites: Ⅱ. Catalytic cycles and reaction selectivity[J]. J Catal, 1995, 153(1): 65-75.

    9. [9]

      [9] 胡晓燕, 李春义, 杨朝合. 正庚烷在HZSM-5催化剂上的催化裂解行为[J]. 物理化学学报, 2010, 26(12): 3291-3298. (HU Xiao-yan, LI Chun-yi, YANG Chao-he. Catalytic cracking behavior of n-heptane over HZSM-5 catalyst[J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3291-3298.)

    10. [10]

      [10] LUKYANOV D B, SHTRAL V I, KHADZHIEV S N. A kinetic model for the hexane cracking reaction over H-ZSM-5[J]. J Catal, 1994, 146(1): 87-92.

    11. [11]

      [11] JUNG J S, PARK J W, SEO G. Catalytic cracking of n-octane over alkali-treated MFI zeolites[J]. Appl Catal A: Gen, 2005, 288(1/2): 149-157.

    12. [12]

      [12] KISSIN Y V. Relative reactivities of alkanes in catalytic cracking reactions[J]. J Catal, 1990, 126(2): 600-609.

    13. [13]

      [13] WIELERS A F H, VAARKAMP M, POST M F M. Relation between properties and performance of zeolites in paraffin cracking[J]. J Catal, 1991, 127(1): 51-66.

    14. [14]

      [14] ALTWASSER S, WELKER C, TRAA Y, WEITKAMP J. Catalytic cracking of n-octane on small-pore zeolites[J]. Micropor Mesopor Mater, 2005, 83(1/3): 345-356.

    15. [15]

      [15] RICE F O. Thermal decomposition of hydrocarbons and engine detonation[J]. Ind Eng Chem, 1934, 26(3): 259-262.

    16. [16]

      [16] 徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 63-65. (XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Zeolite and porous materials[M]. Beijing: Science Press, 2004: 63-65.)

    17. [17]

      [17] JOLLY S, SAUSSEY J, BETTAHAR M M, LAVALLEY J C, BENAZZI E. Reaction mechanisms and kinetics in the n-hexane cracking over zeolites[J]. Appl Catal A: Gen, 1997, 156(1): 71-96.

    18. [18]

      [18] CORMA A, PLANELLES J, SÁNCHEZ-MARÍN J, TOMÁS F. The role of different types of acid site in the cracking of alkanes on zeolite catalysts[J]. J Catal, 1985, 93(1): 30-37.

    19. [19]

      [19] WOJCIECHOWSKI B W. The reaction mechanism of catalytic cracking: Quantifying activity, selectivity, and catalyst decay[J]. Catal Rev, 1998, 40(3): 209-328.

    20. [20]

      [20] SHERTUKDE P V, MARCELIN G, SILL G A, KEITH HALL W. Study of the mechanism of the cracking of small alkane molecules on HY Zeolites[J]. J Catal, 1992, 136(2): 446-462.

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    11. [11]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    14. [14]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    17. [17]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    18. [18]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    19. [19]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    20. [20]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

Metrics
  • PDF Downloads(0)
  • Abstract views(610)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return