Citation: NIU Sheng-li, LIU Meng-qi, LU Chun-mei, LI Hui, HUO Meng-jia. Catalytic performance of carbide slag loaded with potassium fluoride in transesterification[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 690-696. shu

Catalytic performance of carbide slag loaded with potassium fluoride in transesterification

  • Corresponding author: NIU Sheng-li, 
  • Received Date: 29 November 2013
    Available Online: 19 January 2014

    Fund Project: 国家自然科学基金(51206098) (51206098)山东省优秀中青年科学家科研奖励基金(BS2012NJ005)。 (BS2012NJ005)

  • Using the potassium fluoride as the active site and the carbide slag as the carrier, a calcium-based loaded catalyst for the transesterification was prepared through the impregnation method. The catalyst was characterized by X-ray fluorescence, thermogravimetric analysis, X-ray diffraction, nitrogen adsorption and desorption, scanning electron microscope and Hammett indicator. Also, the composition of peanut oil was analyzed by gas chromatograph. Then, the performance of prepared catalyst in the transesterification of peanut oil with methanol was examined with a batchwise experimental system. After being loaded with potassium fluoride, the new textural phases of KCaF3, CaF2 and KF emerge. Under the condition of the catalyst addition of 5%, the transesterification temperature of 62 ℃, the transesterification time of 2 h and the molar ratio of methanol to oil of 15, the glycerol yield of 91.58% can be achieved. Compared with calcium hydroxide and unloaded carbide slag, this loaded catalyst has a better performance.
  • 加载中
    1. [1]

      [1] 郑华艳, 李茜茜, 崔丽萍, 李忠. Ca/Al固体碱催化菜籽油制备生物柴油[J]. 燃料化学学报, 2012, 40(3): 331-336. (ZHENG Hua-yan, LI Qian-qian, CUI Li-ping, LI Zhong. Synthesis of biodiesel from rapeseed oil catalyzed by Ca/Al solid base[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 331-336.)

    2. [2]

      [2] 梁金花, 任晓乾, 王锦堂, 姜岷, 李振江. 双核碱性离子液体催化棉籽油酯交换制备生物柴油[J]. 燃料化学学报, 2010, 38(3): 275-280. (LIANG Jin-hua, REN Xiao-qian, WANG Jin-tang, JIANG Min, LI Zhen-jiang. Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalysts[J]. Journal of Fuel Chemistry and Technology, 2010, 38(3): 275-280.)

    3. [3]

      [3] 侯凯丽, 赵华, 田薇薇, 李会鹏. 固体催化剂催化酯交换反应制备生物柴油研究进展[J]. 工业催化, 2010, 18(8): 7-11. (HOU Kai-li, ZHAO Hua, TIAN Wei-wei, LI Hui-peng. Latest researches in synthesis of biodiesel biodiesel via transesterification catalyzed by solid catalysts[J]. Industrial Catalysis, 2010, 18(8): 7-11.)

    4. [4]

      [4] KOUZU M, HIDAKA J. Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review[J]. Fuel, 2012, 93: 1-12.

    5. [5]

      [5] WEI Z K, XU C L, LI B X. Application of waste eggshell as low-cost solid catalyst for biodiesel production[J]. Bioresour Technol, 2009, 100(11): 2883-2885.

    6. [6]

      [6] BOEY P L, MANIAM G P, HAMID S A, ALI D M H. Crab and cockle shells as catalyst for the preparation of methyl esters from low FFA chicken fat[J]. J Am Oil Chem Soc, 2011, 88(2): 283-288.

    7. [7]

      [7] NAKATANI N, TAKAMORI H, TAKEDA K, SAKUGAWA H. Transesterification of soybean oil using combusted oyster shell waste as a catalyst[J]. Bioresour Technol, 2009, 100(3): 1510-1513.

    8. [8]

      [8] LI Y J, LIU H L, SUN R Y, WU S M, LU C M. Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperature[J]. J Therm Anal Calorim, 2012, 110(2): 685-694.

    9. [9]

      [9] 谭亚, 李彩亭, 曾光明, 翟云波, 李珊红, 邓久华. 添加剂对燃煤电石渣固硫的促进作用[J]. 燃料化学学报, 2005, 33(6): 767-770. (TAN Ya, LI Cai-ting, ZENG Guang-ming, ZHAI Yun-bo, LI Shan-hong, DENG Jiu-hua. Promotion effect of additives on sulfur capture during coal combustion with carbide slag[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 767-770.)

    10. [10]

      [10] NIU S L, LIU M Q, LU C M, LI H, HUO M J. Thermogravimetric analysis of carbide slag: A potential transesterification catalyst validation[J]. J Therm Anal Calorim, 2014, 115(1): 73-79.

    11. [11]

      [11] 牛胜利, 李辉, 路春美, 刘梦琪, 霍梦佳. 造纸白泥催化花生油与甲醇酯交换的特性研究[J]. 燃料化学学报, 2013, 41(7): 856-861. (NIU Sheng-li, LI Hui, LU Chun-mei, LIU Meng-qi, HUO Meng-jia. Catalytic performance of papermaking white clay in the transesterification of peanut oil with methanol[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7): 856-861.)

    12. [12]

      [12] GAO L, TENG G, XIAO G, WEI R. Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst[J]. Biomass Bioenergy, 2010, 34(9): 1283-1288.

    13. [13]

      [13] 钱卫卫, 韩萍芳, 吕效平. 超声作用下KF/CaO催化酯交换反应制备生物柴油[J]. 燃料化学学报, 2010, 38(1): 52-56. (QIAN Wei-wei, HAN Ping-fang, LV XIAO-ping. KF/CaO as solid base catalyst for transesterification to biodiesel by ultrasound[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 52-56.)

    14. [14]

      [14] 刘云, 陈文, 邓利. 生物柴油工艺技术[M]. 北京: 化学工业出版社, 2011: 12-13. (LIU Yun, CHEN Wen, DENG Li. Process technology of biodiesel[M]. Beijing: Chemical Industry Press, 2011: 12-13.)

    15. [15]

      [15] YIN J Z, MA Z, SHANG Z Y, HU D P, XIU Z L. Biodiesel production from soybean oil transesterification in subcritical methanol with K3PO4 as catalyst[J]. Fuel, 2012, 93: 284-287.

    16. [16]

      [16] FREEDMAN B, PRYDE E H, MOUNTS T L. Variables affecting the yields of fatty esters from transesterified vegetable oil[J]. J Am Oil Chem Soc, 1984, 61(10): 1638-1643.

    17. [17]

      [17] 李亚娥. 非负载型固体碱催化剂制备生物柴油的研究[D]. 西安: 西北大学, 2010. (LI Ya-e. Study on non-carrier solid base catalysts for synthsis of biodiesel[D]. Xi'an: Xibei University, 2010.)

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Wenruo NIHongpeng LIYun ZHANGYiran TIANJiehui RUIYingcheng TONGXiaolin PIZhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188

    3. [3]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Mei-Xia Yang Zhen-Hong He Long-Rui Wang You-Xing Yang . Route for Turning Waste CH4 and CO2 into Valuable Products: Reforming for Syngas. University Chemistry, 2026, 41(2): 197-207. doi: 10.12461/PKU.DXHX202503012

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    15. [15]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    16. [16]

      Aoran LIURui LIZongyao WANGPenghui SHANGJiawei WANDan WANG . Hollow multi-shelled structure materials for catalytic applications. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2039-2053. doi: 10.11862/CJIC.20250036

    17. [17]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    18. [18]

      Yukai SHENZhaochao YANYangjun ZHOUMei HUANG . Nickel foam-supported NiFeP/NiFcDCA heterojunction electrocatalyst for efficient urea oxidation reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 237-246. doi: 10.11862/CJIC.20250257

    19. [19]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

Metrics
  • PDF Downloads(0)
  • Abstract views(637)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return