Citation:
NIU Sheng-li, LIU Meng-qi, LU Chun-mei, LI Hui, HUO Meng-jia. Catalytic performance of carbide slag loaded with potassium fluoride in transesterification[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(6): 690-696.
-
Using the potassium fluoride as the active site and the carbide slag as the carrier, a calcium-based loaded catalyst for the transesterification was prepared through the impregnation method. The catalyst was characterized by X-ray fluorescence, thermogravimetric analysis, X-ray diffraction, nitrogen adsorption and desorption, scanning electron microscope and Hammett indicator. Also, the composition of peanut oil was analyzed by gas chromatograph. Then, the performance of prepared catalyst in the transesterification of peanut oil with methanol was examined with a batchwise experimental system. After being loaded with potassium fluoride, the new textural phases of KCaF3, CaF2 and KF emerge. Under the condition of the catalyst addition of 5%, the transesterification temperature of 62 ℃, the transesterification time of 2 h and the molar ratio of methanol to oil of 15, the glycerol yield of 91.58% can be achieved. Compared with calcium hydroxide and unloaded carbide slag, this loaded catalyst has a better performance.
-
Keywords:
- transesterification,
- catalyst,
- carbide slag,
- potassium fluoride,
- load
-
-
-
[1]
[1] 郑华艳, 李茜茜, 崔丽萍, 李忠. Ca/Al固体碱催化菜籽油制备生物柴油[J]. 燃料化学学报, 2012, 40(3): 331-336. (ZHENG Hua-yan, LI Qian-qian, CUI Li-ping, LI Zhong. Synthesis of biodiesel from rapeseed oil catalyzed by Ca/Al solid base[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 331-336.)
-
[2]
[2] 梁金花, 任晓乾, 王锦堂, 姜岷, 李振江. 双核碱性离子液体催化棉籽油酯交换制备生物柴油[J]. 燃料化学学报, 2010, 38(3): 275-280. (LIANG Jin-hua, REN Xiao-qian, WANG Jin-tang, JIANG Min, LI Zhen-jiang. Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalysts[J]. Journal of Fuel Chemistry and Technology, 2010, 38(3): 275-280.)
-
[3]
[3] 侯凯丽, 赵华, 田薇薇, 李会鹏. 固体催化剂催化酯交换反应制备生物柴油研究进展[J]. 工业催化, 2010, 18(8): 7-11. (HOU Kai-li, ZHAO Hua, TIAN Wei-wei, LI Hui-peng. Latest researches in synthesis of biodiesel biodiesel via transesterification catalyzed by solid catalysts[J]. Industrial Catalysis, 2010, 18(8): 7-11.)
-
[4]
[4] KOUZU M, HIDAKA J. Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review[J]. Fuel, 2012, 93: 1-12.
-
[5]
[5] WEI Z K, XU C L, LI B X. Application of waste eggshell as low-cost solid catalyst for biodiesel production[J]. Bioresour Technol, 2009, 100(11): 2883-2885.
-
[6]
[6] BOEY P L, MANIAM G P, HAMID S A, ALI D M H. Crab and cockle shells as catalyst for the preparation of methyl esters from low FFA chicken fat[J]. J Am Oil Chem Soc, 2011, 88(2): 283-288.
-
[7]
[7] NAKATANI N, TAKAMORI H, TAKEDA K, SAKUGAWA H. Transesterification of soybean oil using combusted oyster shell waste as a catalyst[J]. Bioresour Technol, 2009, 100(3): 1510-1513.
-
[8]
[8] LI Y J, LIU H L, SUN R Y, WU S M, LU C M. Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperature[J]. J Therm Anal Calorim, 2012, 110(2): 685-694.
-
[9]
[9] 谭亚, 李彩亭, 曾光明, 翟云波, 李珊红, 邓久华. 添加剂对燃煤电石渣固硫的促进作用[J]. 燃料化学学报, 2005, 33(6): 767-770. (TAN Ya, LI Cai-ting, ZENG Guang-ming, ZHAI Yun-bo, LI Shan-hong, DENG Jiu-hua. Promotion effect of additives on sulfur capture during coal combustion with carbide slag[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 767-770.)
-
[10]
[10] NIU S L, LIU M Q, LU C M, LI H, HUO M J. Thermogravimetric analysis of carbide slag: A potential transesterification catalyst validation[J]. J Therm Anal Calorim, 2014, 115(1): 73-79.
-
[11]
[11] 牛胜利, 李辉, 路春美, 刘梦琪, 霍梦佳. 造纸白泥催化花生油与甲醇酯交换的特性研究[J]. 燃料化学学报, 2013, 41(7): 856-861. (NIU Sheng-li, LI Hui, LU Chun-mei, LIU Meng-qi, HUO Meng-jia. Catalytic performance of papermaking white clay in the transesterification of peanut oil with methanol[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7): 856-861.)
-
[12]
[12] GAO L, TENG G, XIAO G, WEI R. Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst[J]. Biomass Bioenergy, 2010, 34(9): 1283-1288.
-
[13]
[13] 钱卫卫, 韩萍芳, 吕效平. 超声作用下KF/CaO催化酯交换反应制备生物柴油[J]. 燃料化学学报, 2010, 38(1): 52-56. (QIAN Wei-wei, HAN Ping-fang, LV XIAO-ping. KF/CaO as solid base catalyst for transesterification to biodiesel by ultrasound[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 52-56.)
-
[14]
[14] 刘云, 陈文, 邓利. 生物柴油工艺技术[M]. 北京: 化学工业出版社, 2011: 12-13. (LIU Yun, CHEN Wen, DENG Li. Process technology of biodiesel[M]. Beijing: Chemical Industry Press, 2011: 12-13.)
-
[15]
[15] YIN J Z, MA Z, SHANG Z Y, HU D P, XIU Z L. Biodiesel production from soybean oil transesterification in subcritical methanol with K3PO4 as catalyst[J]. Fuel, 2012, 93: 284-287.
-
[16]
[16] FREEDMAN B, PRYDE E H, MOUNTS T L. Variables affecting the yields of fatty esters from transesterified vegetable oil[J]. J Am Oil Chem Soc, 1984, 61(10): 1638-1643.
-
[17]
[17] 李亚娥. 非负载型固体碱催化剂制备生物柴油的研究[D]. 西安: 西北大学, 2010. (LI Ya-e. Study on non-carrier solid base catalysts for synthsis of biodiesel[D]. Xi'an: Xibei University, 2010.)
-
[1]
-
-
-
[1]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[2]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[3]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[4]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[5]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[6]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[7]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[8]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[9]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
-
[10]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[11]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[12]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[13]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[14]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[16]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[17]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[20]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(398)
- HTML views(19)