Citation: LI Xiao-ming, WANG Xiao-bo, FENG Yi-peng, ZHAO Zeng-li, LI Hai-bin. Modification of biomass fuel gas in molten salts[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 671-676. shu

Modification of biomass fuel gas in molten salts

  • Corresponding author: WANG Xiao-bo, 
  • Received Date: 13 January 2014
    Available Online: 29 March 2014

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201500) (973计划,2011CB201500)广东省科技计划(2012B050500007)。 (2012B050500007)

  • The modification of biomass fuel gas was studied in a fixed reactor with a certain amount of molten salts. The effects of temperature, static liquid height and superficial gas velocity on the outlet gas composition, the NaOH consumption, and the saturable absorption time of molten salts were investigated. The results show that the NaOH consumption increases from 59% to 83% and the biogas handling volume per unit molten salts is enhanced from 0.42 m3/kg to 0.48 m3/kg by elevating the temperature from 400 to 600 ℃. The CO conversion and the H2/CO volume ratio of outlet gas both increase with the increasing of temperature and static liquid height, and decrease with the increasing of superficial gas velocity.
  • 加载中
    1. [1]

      [1] WILHELM D J, SIMBECK D R, KARP A D, DICKENSON R L. Syngas production for gas-to-liquids applications: Technologies, issues and outlook[J]. Fuel Process Technol, 2001, 71(1):139-148.

    2. [2]

      [2] 朱锡峰. 生物质气化制备合成气的研究[J]. 可再生能源, 2002, 6: 7-10. (ZHU Xi-feng. The conversion of biomass into synthesis gas[J]. Renewable Energy, 2002, 6: 7-10.)

    3. [3]

      [3] ARENA U. Process and technological aspects of municipal solid waste gasification. A review[J]. Waste Manage, 2012, 32(4): 625-639.

    4. [4]

      [4] DIGMAN B, JOO H S, KIM D S. Recent progress in gasification/pyrolysis technologies for biomass conversion to energy[J]. Environ Prog Sust Energy, 2009, 28(1): 47-51.

    5. [5]

      [5] 王铁军, 常杰. 生物质合成气的化学当量比调整[J].太阳能学报, 2005, 26(4): 533-537. (WANG Tie-jun, CHANG Jie. Experimental study on biomass syngas stoichiometric ratio adjustment[J]. Acta Energiae Solaris Sinica, 2005, 26(4):533-537.)

    6. [6]

      [6] 黄浩, 胡国新. Ca(OH)2对生物质水蒸气气化制氢的影响[J].上海交通大学学报, 2007, 41(12): 1930-1933. (HUANG Hao, HU Guo-xin. The influence of Ca(OH)2 on hydrogen production from biomass by steam gasification[J]. Journal of Shanghai Jiaotong University, 2007, 41(12): 1930-1933.)

    7. [7]

      [7] KINOSHITA C M, TURN S Q. Production of hydrogen from bio-oil using CaO as a CO2 sorbent[J]. Int J Hydrog Energy, 2003, 28(10): 1065-1071.

    8. [8]

      [8] BERTOLINI G E, FONTAINE J. Value recovery from plastics waste by pyrolysis in molten salts[J]. Conserv Recycl, 1987, 10(4): 331-343.

    9. [9]

      [9] MATSUNAMI J, YOSHIDA S, OKU Y. Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization[J]. Solar Energy, 2000, 68(3): 257-261.

    10. [10]

      [10] JIN G, IWAKI H, ARAI N. Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts[J]. Energy, 2005, 30(7):1192-1203.

    11. [11]

      [11] RAHARJO F, YASUAKI S, YOSHⅡE T, NARUSE F. Hot gas desulfurization and regeneration characteristic with molten alkali carbonates[J]. Int J Chem Eng Appl, 2010, 1(1): 96-102.

    12. [12]

      [12] 王小波, 刘安琪, 赵增立, 李海滨, 黎志强, 陈勇. 熔融盐粗燃气组分调整实验研究[J]. 现代化工, 2012, 32(4): 43-46. (WANG xiao-bo, LIU An-qi, ZHAO Zeng-li, LI Hai-bin, LI Zhi-qiang, CHEN Yong. Modification of raw fuel gas of molten salts[J]. Modern Chemical Industry, 2012, 32(4): 43-46.)

    13. [13]

      [13] 王小波, 赵增立, 刘安琪, 武宏香, 李海滨, 陈勇. 熔融盐对合成气成分影响模型[J]. 化工学报, 2012, 63(6): 1697-1703. (WANG Xiao-bo, ZHAO Zeng-li, LIU An-qi, WU Hong-xiang, LI Hai-bin, CHEN Yong. Modeling for effect of molten salts on syngas composition[J]. CIESC Journal, 2012, 63(6): 1697-1703.)

    14. [14]

      [14] 王小波, 赵增立, 刘安琪, 李常河, 李海滨, 陈勇. 熔融盐中甲苯的裂解实验研究[J]. 燃料化学学报, 2011, 39(9): 675-681. (WANG Xiao-bo, ZHAO Zeng-li, LIU An-qi, LI Chang-he, LI Hai-bin, CHEN Yong. Modeling for effect of molten salts on syngas composition[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 675-681.)

    15. [15]

      [15] DESSUREAULT Y, SANGSTER J, PELTON A D. Coupled phase diagram-thermodynamic analysis of the 24 binary systems, A2CO3-AX and A2SO4-AX where A=Li, Na, K and X=Cl, F, NO3, OH[J]. J Phys Chem Ref Data, 1990, 19(5): 1149-1178.

  • 加载中
    1. [1]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    3. [3]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    4. [4]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    8. [8]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    9. [9]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    10. [10]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    13. [13]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    14. [14]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    15. [15]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    16. [16]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    19. [19]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    20. [20]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

Metrics
  • PDF Downloads(0)
  • Abstract views(630)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return