Citation: WANG Zhi-cai, CHEN En-sheng, PAN Chun-xiu, REN Shi-biao, LEI Zhi-ping, SHUI Heng-fu. Spectral characterization of asphaltene from direct liquefaction of Shengli lignite[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 656-661. shu

Spectral characterization of asphaltene from direct liquefaction of Shengli lignite

  • Corresponding author: WANG Zhi-cai, 
  • Received Date: 27 June 2013
    Available Online: 27 January 2014

    Fund Project: 国家自然科学基金(U1261208,51174254,21306001,U1261208,21176001) (U1261208,51174254,21306001,U1261208,21176001)

  • A series of asphaltenes were prepared by the direct liquefaction of Shengli lignite under different conditions in this paper. Their structures and compositions were characterized by elemental analysis, FT-IR spectroscopy, UV-vis spectroscopy and Fluorescent spectroscopy. The influences of initial pressure of H2 and liquefaction temperature on the structure of asphaltene were also discussed. The results indicate that Shengli lignite displays high conversion of liquefaction, and low yield of heavy intermediates such as asphaltene and preasphaltene. The aromatic systems mainly consist of 2~3 rings condensed nucleus and multi-phenyl compounds. To increase the initial pressure of H2 can promote the hydro-cracking of coal matrix and the removal of hydroxyl group by hydrogenation. High temperature and high pressure of H2 is favorable for the hydro-cracking of the substituent in AS. By contrast, the fluorescent spectroscopy is an effective technique to characterize the aromatic nucleus of asphaltne. The results characterized by the fluorescence spectra of asphaltene are relation with its H/C atomic ratio.
  • 加载中
    1. [1]

      [1] BOCKRATH B C, DONNE C L D, SCHWEIGHARDT F K. Coal-derived asphaltenes: Characterization by acid-base fractionation[J]. Fuel, 1978, 57(1): 4-8.

    2. [2]

      [2] 徐秀峰, 张蓬洲, 杨保联, 李丽云, 叶朝辉. 用 13C-NMR及DEPT技术分析气煤加氢产物中沥青烯段分的组成结构[J]. 燃料化学学报, 1995, 23(4): 410-415. (XU Xiu-feng, ZHANG Peng-zhou, YANG Bao-lian, LI Li-yun, YE Zhao-hui. Structural analysis of asphaltenes from hydrogenated PI of gas coal by 13C-NMR spectrum and DEPT technique[J]. Journal of Fuel Chemistry and Technology, 1995, 23(4): 410-415.)

    3. [3]

      [3] 张娉, 潘铁英, 史新梅, 周丽芳, 常鸿雁, 张德祥, 高晋生. 煤直接液化中油煤浆热溶产物的13C-NMR研究[J]. 波谱学杂志, 2006, 23(1): 41-47. (ZHANG Ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, CHANG Hong-yan, ZHANG De-xiang, GAO Jin-sheng. Thermally dissolved products of coal-oil slurry during direct coal liquefaction studied by NMR spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2006, 23(1): 41-47.)

    4. [4]

      [4] MASUDA K, OKUMA O, NISHIZAWA T, KANAJI M, MATSUMURA T. High-temperature n.m.r. analysis of aromatic units in asphaltenes and preasphaltenes derived from Victorian brown coal[J]. Fuel, 1996, 75(3): 295-299.

    5. [5]

      [5] HEROD A A, STOKES B J, TYE R E, GAINES A F, LI C Z, KANDIYOTIET R. Comparison of fast atom bombardment mass spectrometry and size exclusion chromatography in defining high molecular masses in coal-derived materials[J]. Fuel, 1993, 72(9): 1317-1325.

    6. [6]

      [6] PARKER J E, JOHNSON C A F, JOHN P, SMITH G P, HEROD A A, STOKES B J, KANDIYOTI R. Identification of large molecular mass material in high temperature coal tars and pitches by laser desorption mass spectroscopy[J]. Fuel, 1993, 72(10): 1381-1391.

    7. [7]

      [7] HORTAL A R, HURTADO P, MARTÍNEZ-HAYA B, MULLINS O C. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments[J]. Energy Fuels, 2007, 21(5): 2863-2868.

    8. [8]

      [8] LI C Z, WU F, XU B, KANDIYOTI R. Characterization of successive time/temperature-resolved liquefaction extract fractions released from coal in a flowing-solvent reactor[J]. Fuel, 1995, 74(1): 37-45.

    9. [9]

      [9] SCOTT R T, NORMAN C L. Nature of hydrogen bonding in coal-derived asphaltenes[J]. Fuel, 1978, 57(2): 117-121.

    10. [10]

      [10] 谷小会, 史士东, 周铭. 神华煤直接液化残渣中沥青烯组分的分子结构研究[J]. 煤炭学报, 2006, 31(6): 785-789. (GU Xiao-hui, SHI Shi-dong, ZHOU Ming. The molecular structure of heavy oil fraction from the Shenhua coal direct liquefaction residue[J]. Journal of China Coal Society, 2006, 31(6): 785-789.)

    11. [11]

      [11] GHOSH A K, SRIVASTAVA S K, BAGCHI S. Study of self-aggregation of coal derived asphaltene in organic solvents: A fluorescence approach[J]. Fuel, 2007, 86(16): 2528-2534.

    12. [12]

      [12] GROENZIN H, MULLINS O C. Molecular size and structure of asphaltenes from various sources[J]. Energy Fuels, 2000, 14(3): 677-684.

    13. [13]

      [13] WANG Z, LI L, SHUI H, WANG Z, CUI X, REN S, LEI Z, KANG S. Study on the aggregation of coal liquefied preasphaltene in organic solvents by UV-vis and fluorescence spectrophotometry[J]. Fuel, 2011, 90(1): 305-311.

    14. [14]

      [14] WANG Z, WEI C, SHUI H, REN S, PAN C, WANG Z, LI H, LEI Z. Synchronous fluorimetric characterization of heavy intermediates of coal direct liquefaction[J]. Fuel, 2012, 98(1): 67-72.

    15. [15]

      [15] 王知彩, 崔雪萍, 水恒福, 王祖山, 雷智平, 康世刚. 煤液化沥青烯的荧光光谱表征及其缔合结构研究[J]. 光谱学与光谱分析, 2010, 30(6): 1530-1534. (WANG Zhi-cai, CUI Xue-ping, SHUI Heng-fu, WANG Zu-shan, LEI Zhi-ping, KANG Shi-gang. Fluorescence spectroscopy characterization of asphaltene liquefied from coal and study of its association structure[J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1530-1534.)

    16. [16]

      [16] WANG Z, HU J, SHUI H, REN S, WEI C, PAN C, LEI Z, CUI X. Study on the structure and association of asphaltene derived from liquefaction of lignite by fluorescence spectroscopy[J]. Fuel, 2013, 109: 94-100.

    17. [17]

      [17] WANG Z, SHUI H, ZHANG D, GAO J. A comparison of FeS, FeS+S and solid superacid catalytic properties for coal hydro-liquefaction[J]. Fuel, 2007, 86(5/6): 835-842.

    18. [18]

      [18] 王知彩, 水恒福, 古绪鹏, 高晋生. SO42/ZrO2固体酸催化神华煤直接液化反应性研究[J].燃料化学学报, 2010, 38(3): 257-263. (WANG Zhi-cai, SHUI Heng-fu, GU Xu-peng, GAO Jin-sheng. Study on the direct liquefaction reactivity of Shenhua coal catalyzed by SO42-/ZrO2 solid acid[J]. Journal of Fuel Chemistry and Technology, 2010, 38(3): 257-263.)

    19. [19]

      [19] DUTTA R P, SCHOBERT H H. Hydrogenation/dehydrogenation of polycyclic aromatic hydrocarbons using ammonium tetrathiomolybdate as catalyst precursor[J]. Catal Today, 1996, 31(1): 65-77.

    20. [20]

      [20] HOOPER R J, BATTAERD H A J, EVANS D G. Thermal dissociation of tetralin between 300 and 450℃[J]. Fuel, 1979, 58(2): 132-138.

  • 加载中
    1. [1]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    7. [7]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    8. [8]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    19. [19]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(0)
  • Abstract views(848)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return