Citation: LIN Zhen-min, CHEN Yun, WANG Zhi-hua, ZOU Xiang-bo, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Release characteristics of macromolecular volatile products during rapid pyrolysis of upgraded low-rank coals[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(6): 650-655. shu

Release characteristics of macromolecular volatile products during rapid pyrolysis of upgraded low-rank coals

  • Corresponding author: WANG Zhi-hua, 
  • Received Date: 23 November 2013
    Available Online: 19 February 2014

    Fund Project: 国家重点基础研究发展规划(973计划,2012CB214906)。 (973计划,2012CB214906)

  • 3 low rank coals were dewatered and upgraded by hydrothermal process at 200, 250 and 300 ℃. Nitrogen adsorption measurements and FT-IR spectra of the parent and upgraded coals were performed to get the change of pore distribution and functional groups. After hydrothermal treatment, the average pore diameter and specific pore volume drop rapidly. The content of hydroxyl and carboxyl decreases and the cyclized degree increases. The monocyclic aromatics change into polycyclic aromatics and the organic matter in coal is gradually mature, which reflect the coal rank becomes higher. Then, rapid pyrolysis were carried out in a CDS5000 Pyroprobe accompanied by a GC/MS at 5 000 ℃/s, 1 000 ℃ to investigate the release characteristics of macromolecular volatile products of these coals. With the final reaction temperature increasing, the content of aliphatic hydrocarbon, acids and phenols decreases, that of aromatic hydrocarbon increases. The esters in coals have no obvious variation law.
  • 加载中
    1. [1]

      [1] 李政, 梁心玉, 薛亚丽. 基于烟煤、褐煤的IGCC系统技术经济性对比[J]. 中国电机工程学报, 2012, 32(5): 39-47. (LI Zheng, LIANG Xin-yu, XUE Ya-li. Techno-economic comparison of IGCC systems employing bituminous and lignite[J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32(5): 39-47.)

    2. [2]

      [2] 赵振新, 朱书全, 马名杰, 张恒, 王路宁, 颜淑娟, 杜晓静. 中国褐煤的综合优化利用[J]. 洁净煤技术, 2008, 14(1): 28-31. (ZHAO Zhen-xin, ZHU Shu-quan, MA Ming-jie, ZHANG Heng, WANG Lu-ning, YAN Shu-juan, DU Xiao-jing. Comprehensive and optimal utilization of lignite in China[J]. Clean Coal Technology, 2008, 14(1): 28-31.)

    3. [3]

      [3] 周永刚, 李培, 杨建国, 李帅英, 赵虹. 褐煤中不同水分析出的能耗研究[J]. 中国电机工程学报, 2011, 31(S1): 114-118. (ZHOU Yong-gang, LI Pei, YANG Jian-guo, LI Shuai-ying, ZHAO Hong. Research on energy consumption for different moisture evaporation of lignite[J]. Proceedings of the Chinese Society for Electrical Engineering, 2011, 31(S1): 114-118.)

    4. [4]

      [4] 赵卫东, 刘建忠, 周俊虎, 曹晓哲, 张光学, 岑可法. 低阶煤高温高压水热处理改性及其成浆特性[J]. 化工学报, 2009, 60(6): 1560-1567. (ZHAO Wei-dong, LIU Jian-zhong, ZHOU Jun-hu, CAO Xiao-zhe, ZHANG Guang-xue, CEN Ke-fa. Hot water treatment of low rank coal in high temperature and high pressure reactor and its slurry ability[J]. Journal of Chemical Industry and Engineering, 2009, 60(6): 1560-1567.)

    5. [5]

      [5] SHUI H, WU Y, WANG Z, LEI Z, LIN C, REN S, PAN C, KANG S. Hydrothermal treatment of a sub-bituminous coal and its use in coking blends[J]. Energy Fuels, 2012, 27(1): 138-144.

    6. [6]

      [6] LIU X, LI B, MIURA K. Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low-rank coal by using a new distributed activation energy model[J]. Fuel Process Technol, 2001, 69(1): 1-12.

    7. [7]

      [7] 赵卫东. 低阶煤水热改性制浆的微观机理及燃烧特性研究[D]. 杭州: 浙江大学, 2009. (ZHAO Wei-dong. Micro mechanism and combustion characteristics of low-rank coal water slurry upgraded by hot water treatments[D]. Hangzhou: Zhejiang University, 2009.)

    8. [8]

      [8] 邹祥波, 王智化, 胡昕, 周志军, 黄振宇, 周俊虎, 岑可法. 提质褐煤的快速热裂解气体产物的析出特性[J]. 燃烧科学与技术, 2013, 19(3): 268-274. (ZOU Xiang-bo, WANG Zhi-hua, HU Xin, ZHOU Zhi-jun, HUANG Zhen-yu, ZHOU Jun-hu, CEN Ke-fa. Release characteristics of gaseous products during rapid pyrolysis of upgraded lignite[J]. Journal of Combustion Science and Technology, 2013, 19(3): 268-274.)

    9. [9]

      [9] FAVAS G, JACKSON W R. Hydrothermal dewatering of lower rank coals. 1. Effects of process conditions on the properties of dried product[J]. Fuel, 2003, 82(1): 53-57.

    10. [10]

      [10] FAVAS G, JACKSON W R. Hydrothermal dewatering of lower rank coals. 2. Effects of coal characteristics for a range of Australian and international coals[J]. Fuel, 2003, 82(1): 59-69.

    11. [11]

      [11] FAVAS G, JACKSON W R, MARSHALL M. Hydrothermal dewatering of lower rank coals. 3. High-concentration slurries from hydrothermally treated lower rank coals[J]. Fuel, 2003, 82(1): 71-79.

    12. [12]

      [12] YU Y, LIU J, WANG R, ZHOU J, CEN K. Effect of hydrothermal dewatering on the slurry ability of brown coals[J]. Energy Convers Manage, 2012, 57: 8-12.

    13. [13]

      [13] 虞育杰. 褐煤水热脱水提质制备高浓度水煤浆的基础研究[D]. 杭州: 浙江大学, 2013. (YU Yu-jie. Fundamental research of upgrading brown coal by hydrothermal dewatering to prepare coal water slurry with high solid concentration[D]. Hangzhou: Zhejiang University, 2013.)

    14. [14]

      [14] 王知彩, 水恒福, 张德祥, 高晋生. 水热处理对神华煤质的影响[J]. 燃料化学学报, 2006, 34(5): 524-529. (WANG Zhi-cai, SHUI Heng-fu, ZHANG De-xiang, GAO Jin-sheng. Effect of hydrothermal treatment on some properties of Shenhua coal[J]. Journal of Fuel Chemistry and Technology, 2006, 34(5): 524-529.)

    15. [15]

      [15] 水恒福, 曹美霞, 王知彩. 几种烟煤及其热处理后的溶胀性能研究[J]. 燃料化学学报, 2007, 35(2): 141-145. (SHUI Heng-fu, CAO Mei-ya, WANG Zhi-cai. Swelling behavior of several bituminous coals and their thermally treated coals[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 141-145.)

    16. [16]

      [16] KARTHIKEYAN M, ZHONGHUA W, MUJUMDAR A S. Low-rank coal drying technologies—Current status and new developments[J]. Drying Technol, 2009, 27(3): 403-415.

    17. [17]

      [17] 王明敏, 张建胜, 张守玉, 吴晋沪, 岳光溪. 热解条件对煤焦比表面积及孔隙分布的影响[J]. 煤炭学报, 2008, 33(1): 76-79. (WANG Ming-min, ZHANG Jian-sheng, ZHANG Shou-yu, WU Jin-hu, YUE Guang-xi. Effect of pyrolysis conditions on the char surface area and pore distribution[J]. Journal of China Coal Society, 2008, 33(1): 76-79.)

    18. [18]

      [18] KAJI R, MURANAKA Y, OTSUKA K, HISHINUMA Y. Water absorption by coals: Effects of pore structure and surface oxygen[J]. Fuel, 1986, 65(2): 288-291.

    19. [19]

      [19] HULSTON J, FAVAS G, CHAFFEE A L. Physico-chemical properties of Loy Yang lignite dewatered by mechanical thermal expression[J]. Fuel, 2005, 84(14/15): 1940-1948.

    20. [20]

      [20] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002, 31(5): 25-29. (FENG Jie, LI Wen-ying, XIE Ke-chang. Research on coal structure using FT-IR[J]. Journal of China University of Mining & Technology, 2002, 31(5): 25-29.)

    21. [21]

      [21] 朱红, 李虎林, 欧泽深, 王淀佐, 吕小丽. 不同煤阶煤表面改性的FTIR谱研究[J]. 中国矿业大学学报, 2001, 30(4): 46-50. (ZHU Hong, LI Hu-lin, OU Ze-shen, WANG Ding-zuo, LV Xiao-li. Study on surface modification of different rank coals by using FTIR[J]. Journal of China University of Mining & Technology, 2001, 30(4): 46-50.)

    22. [22]

      [22] IBARRA J, MUOZ E, MOLINER R. FTIR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996, 24(6/7): 725-735.

    23. [23]

      [23] KISTER J, GUILIANO M, LARGEAU C, DERENNE S, CASADEVALL E. Characterization of chemical structure, degree of maturation and oil potential of Torbanites (type I kerogens) by quantitative FT-i.r. spectroscopy[J]. Fuel, 1990, 69(11): 1356-1361.

    24. [24]

      [24] LIEVENS C, CI D, BAI Y, MA L, ZHANG R, CHEN J Y, GAI Q, LONG Y, GUO X. A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS[J]. Fuel Process Technol, 2013, 116: 85-93.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    6. [6]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    7. [7]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    8. [8]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    9. [9]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    10. [10]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    11. [11]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    12. [12]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    13. [13]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    14. [14]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    15. [15]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    16. [16]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    17. [17]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    18. [18]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    19. [19]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    20. [20]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

Metrics
  • PDF Downloads(0)
  • Abstract views(592)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return