Citation:
GAO Song-ping, WANG Jian-fei, ZHAO Jian-tao, WANG Zhi-qing, FANG Yi-tian, HUANG Jie-jie. CH4 release character from pressurized fast pyrolysis of lignite in CO atmosphere[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(6): 641-649.
-
Fast pyrolysis of Huolinhe lignite was carried out under pressure in a tubular reactor, and the CH4 evolution at CO atmosphere was examined. CO dissociation state O(a) adsorbed on coal is an active center. The stronger electronegative O could induce the electron cloud of other atoms around O(a) atom to offset to it, which could weaken the strength of original chemical bonds and promote their breaking. These result in the cracks of the aromatic ring, side chain, ether linkages and aliphatic chain in the char, which could produce more free radicals. The free radicals could stabilize the fragments produced in the pyrolysis, and lead to more CH4 generated and involved. Therefore, the CH4 yield is higher under CO than it in N2. The CH4 yield increases by 12.5% under CO compared with N2 at 900 ℃ and 1.0 MPa. The CH4 yield increases with raise of temperature and pressure.
-
-
-
[1]
[1] 郭树才. 煤化工工艺学[M]. 2版. 北京: 化学工业出版社, 2007. (GUO Shu-cai. Coal chemical technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2007.)
-
[2]
[2] 伏义路, 黄志刚, 庄叔贤, 范崇正, 孙汉芳. 高浓度CO变换-甲烷化反应积碳的初步研究[J]. 燃料化学学报, 1983, 12(1): 25-31. (FU Yi-lu, HUANG Zhi-gang, ZHUANG Shu-xian, FAN Chong-zheng, SUN Han-fang. Preliminary investigation of carbon deposition in the shift-methanation reaction with high CO concentration[J]. Journal of Fuel Chemistry and Technology, 1983, 12(1): 25-31.)
-
[3]
[3] 许世森, 张东亮, 任永强. 大规模煤气化技术[M]. 北京: 化学工业出版社, 2007. (XU Shi-shen, ZHANG Dong-liang, REN Yong-qiang. Large-scale coal gasification technology[M]. Beijing: Chemical Industry Press, 2007.)
-
[4]
[4] MA Z H, ZHU Z B, ZHANG C F. Flash hydropyrolysis of zalannoer lignite[J]. Fuel Process Technol, 1994, 38(2): 99-109.
-
[5]
[5] KARCZ A, PORADA S. Formation of C1-C3 hydrocarbons during pressure pyrolysis and hydrogasification in relation to structural changes in coal[J]. Fuel, 1995, 74(6): 806-809.
-
[6]
[6] 金海华, 朱子彬. 煤快速热解获得液态烃和气态烃的研究I气氛影响的考察[J]. 化工学报, 1992, 43(6): 719-726. (JIN Hai-hua, ZHU Zi-bin. Flash pyrolysis of brown coal for obtaining liquid and gaseous hydrocarbons Ⅰeffect of pyrolysis atmosphere[J]. Journal of Chemical Industry and Engineering, 1992, 43(6): 719-726.)
-
[7]
[7] SUNDARAM M S, STEINBERG M, FALLON P T. Flash pyrolysis of coal in reactive and non-reactive gaseous environments[J]. Am Chem Soc Div Fuel Chem, 1983, 25(5): 106-129.
-
[8]
[8] FALLON P T, BHATT B, STEINBERG M. The flash hydropyrolysis of lignite and sub-bituminous coals to both liquid and gaseous hydrocarbon products[J]. Fuel Process Technol, 1980, 3(3/4): 155-168.
-
[9]
[9] 朱子彬, 王欣荣, 马智华, 俞丰, 徐志刚, 张成芳, 黄瀛华. 烟煤快速加氢热解的研究I.气氛影响的考察[J]. 燃料化学学报, 1996, 24(5): 411-415. (ZHU Zi-bin, WANG Xin-rong, MA Zhi-hua, YU Feng, XU Zhi-gang, ZHANG Zhi-fang, HUANG Ling-hua. Study on flash hydropyrolysis of bituminous coalⅠ. Effect of atmospheres[J]. Journal of Fuel Chemistry and Technology, 1996, 24(5): 411-415.)
-
[10]
[10] 廖洪强, 孙成功, 李保庆. 煤与焦炉气共热解特性研究Ⅲ焦油分析[J]. 燃料化学学报, 1998, 26(1): 7-12. (LIAO Hong-qiang, SUN Cheng-gong, LI Bao-qing. Copyrolysis of coal with coke-oven gas Ⅲ. Analyses of tar[J]. Journal of Fuel Chemistry and Technology, 1998, 26(1): 7-12.)
-
[11]
[11] 廖洪强, 孙成功, 李保庆. 焦炉气气氛下煤加氢热解研究[J]. 煤炭转化, 1997, 20(2): 38-43. (LIAO Hong-qiang, SUN Cheng-gong, LI Bao-qing. Progress of coal hydropyrolysis with coke-oven gas[J]. Coal Conversion, 1997, 20(2): 38-43.)
-
[12]
[12] 廖洪强, 李保庆, 张碧江. 煤—焦炉气共热解特性研究Ⅳ.甲烷和一氧化碳对热解的影响[J]. 燃料化学学报, 1998, 26(1): 13-17. (LIAO Hong-qiang, LI Bao-qing, ZHANG Bi-jiang. Copyrolysis of coal with coke oven gas(Ⅳ). Influence of CH4 and CO on pyrolysis yields[J]. Journal of Fuel Chemistry and Technology, 1998, 26(1): 13-17.)
-
[13]
[13] BRACKMAN-DANHEUX C, CYPRES R, FONTANA A, LAURENT P, VAN HOEGAERDEN M. Coal hydromethanolysis with coke-oven gas.1.Influence of temperature on the pyrolysis yields[J]. Fuel, 1992, 71(3): 251-255.
-
[14]
[14] ZHONG M, ZHANG Z K, ZHOU Q, YUE J R, GAO S Q, XU G W. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres: Product distribution and pyrolysis gas[J]. J Anal Appl Pyrolysis, 2012, 97(9): 123-129.
-
[15]
[15] 张晓方, 金玲, 熊燃, 汪印, 刘云义, 许光文. 热分解气氛对流化床煤热解制油的影响[J]. 化工学报, 2009, 60(9): 2299-2307. (ZHANG Xiao-fang, JIN Ling, XIONG Ran, WANG Yin, LIU Yun-yi, XU Guang-wen. Effect of reaction atmosphere on tar production from coal pyrolysis in fluidized bed reactor[J]. CIESC Journal, 2009, 60(9): 2299-2307.)
-
[16]
[16] ZHANG X F, DONG L, ZHANG J W, TIAN Y J, XU G W. Coal pyrolysis in a fluidized bed reactor simulating the process conditions of coal topping in CFB boiler[J]. J Anal Appl Pyrolysis, 2011, 91(1): 241-250.
-
[17]
[17] 高松平, 赵建涛, 王志青, 王建飞, 房倚天, 黄戒介. CO对褐煤快速热解行为的影响[J]. 燃料化学学报, 2013, 41(5): 550-557. (GAO Song-ping, ZHAO Jian-tao, WANG Zhi-qing, WANG Jian-fei, FANG Yi-tian, HUANG Jie-jie. The Effect of CO on the fast pyrolysis behaviors of lignite[J]. Journal of Fuel Chemistry and Technology, 2013, 41(5): 550-557.)
-
[18]
[18] SLAGHUIS J H, VAN DER WALT T J. Increased reactivity of char due to pyrolysis in areactive atmosphere[J]. Fuel, 1991, 70(7): 831-834.
-
[19]
[19] SUUBERG E M, PETERS W A, HOWARD J B. Product compositions in rapid hydropyrolysis of coal[J]. Fuel, 1980, 59(6): 405-412.
-
[20]
[20] 高松平, 赵建涛, 王志青, 王建飞, 房倚天, 黄戒介. CO2对褐煤快速热解行为的影响[J]. 燃料化学学报, 2013, 41(3): 257-264. (GAO Song-ping, ZHAO Jian-tao, WANG Zhi-qing, WANG Jian-fei, FANG Yi-tian, HUANG Jie-jie. The effect of CO2 on the fast pyrolysis behaviors of lignite[J]. Journal of Fuel Chemistry and Technology, 2013, 41(3): 257-264.)
-
[21]
[21] GAO S P, WANG J F, WANG Z Q, ZHAO J T, FANG Y T. Effect of CO on the CH4 evolution during fast pyrolysis of lignite in reductive atmospheres[J]. J Anal Appl Pyrolysis, 2014, 106: 104-111.
-
[22]
[22] KARCZ A, PORADA S. Kinetics of the formation of C1-C3 hydrocarbons in pressure pyrolysis of coal[J]. Fuel Process Technol, 1990, 26(1): 1-13.
-
[23]
[23] YANG H P, CHEN H P, JU F D, YAN R, ZHANG S H. Influence of pressure on coal pyrolysis and char gasification[J]. Energy Fuels, 2007, 21(6): 3165-3170.
-
[24]
[24] 徐小云, 伏义路. CO的吸附、歧化及其与水反应的程序升温研究[J]. 燃料化学学报, 1987, 15(1): 42-48. (Xu Xiao-yun, Fu Yi-lu. Investigation of chemisorption and disproportionation of CO and its reaction with H2O by temperature programmed heating[J]. Journal of Fuel Chemistry and Technology, 1987, 15(1): 42-48.)
-
[25]
[25] ZAGLI A E, FALCONER J L, KEENAN C A. Methanation on supported nickel catalysts using temperature programmed heating[J]. J Catal, 1979, 56(3): 453-467.
-
[26]
[26] GALUSZKA J, CHANG J R, AMENOMIYA Y. Disproportionation of carbon monoxide on supported nickel catalysts[J]. J Catal, 1981, 68(1): 172-181.
-
[27]
[27] RABO J A, RISCH A P, POUTSMA M L. Reactions of carbon monoxide and hydrogen on cobalt, nickel, ruthenium, and palladium[J]. J Catal, 1978, 53(3): 295-311.
-
[28]
[28] 伏义路, 李锡青, 徐小云. CO的吸附和歧化反应及其在变换—甲烷化反应中的作用[J]. 燃料化学学报, 1984, 12(4): 316-322. (FU Yi-lu, LI Xi-qing, XU Xiao-yun. The role of chemisorptions and disproportionation of CO in the shift-methatnation reaction[J]. Journal of Fuel Chemistry and Technology, 1984, 12(4): 316-322.)
-
[29]
[29] 李锡青, 伏义路, 黄志刚. 镍基催化剂上CO和H2O吸附与反应的红外光谱研究[J]. 物理化学学报, 1985, 1(1): 22-31. (LI Xi-qing, FU Yi-lu, HUANG Zhi-gang. Infraned study of adsorption and reaction of CO and H2O on Ni catalyst[J]. Acta Phyico-Chemica Sinica, 1985, 1(1): 22-31.)
-
[30]
[30] DOOLAN K R, MACKIE J C. Products from the rapid pyrolysis of a brown coal in inert and reducing atmospheres[J]. Fuel, 1985, 64(3): 400-405.
-
[31]
[31] FERMOSO J, GIL M V, BORREGO A G, PEVIDA C, PIS J J, RUBIERA F. Effect of the pressure and temperature of devolatilization on the morphology and steam gasification reactivity of coal chars[J]. Energy Fuels, 2010, 24(10): 5586-5595.
-
[32]
[32] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002, 31(5): 362-363. (FENG Jie, LI Wen-ying, XIE Ke-chang. Research on coal structure using FT-IR[J]. Journal of China University of Mining & Technology, 2002, 31(5): 362-363.)
-
[1]
-
-
-
[1]
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
-
[2]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[3]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[4]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
-
[5]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[6]
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
-
[7]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[8]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[9]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[10]
Jingjie Tang , Luying Xie , Jiayu Liu , Shangyu Shi , Xinyu Sun , Jiayang Lin , Qikun Yang , Chuan'ang Yu , Zecheng Wang , Yingying Wang , Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091
-
[11]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[12]
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
-
[13]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[14]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[15]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[16]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[17]
Longsheng Zhan , Yuchao Wang , Mengjie Liu , Xin Zhao , Danni Deng , Xinran Zheng , Jiabi Jiang , Xiang Xiong , Yongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695
-
[18]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[19]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[20]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(491)
- HTML views(9)