Citation: ZHANG Li, LIU Jian-jun, YANG Zhong-qing, ZHENG Shi-wei. Effects of sulfur poisoning on combustion characteristics of low concentration methane with SO2 over Cu/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 635-640. shu

Effects of sulfur poisoning on combustion characteristics of low concentration methane with SO2 over Cu/γ-Al2O3 catalysts

  • Received Date: 16 October 2013
    Available Online: 15 January 2014

    Fund Project: 国家自然科学基金(51206200) (51206200)中央高校基本科研业务经费(CDJZR12140031)。 (CDJZR12140031)

  • The Cu/γ-Al2O3 catalysts with 11.32% copper contents prepared by the incipient wetness impregnation were tested in a fixed bed reactor. The effects of SO2 concentration (0 ~ 0.02%) on the combustion characteristic and stability of low concentration methane (3%) over Cu/γ-Al2O3 catalysts were investigated. By the analysis of microstructure and chemical component of fresh and aged catalysts, the mechanism of sulfur poisoning in the catalytic reaction was discussed by combining with the theoretical analysis. The results show that the addition of SO2 in the feed gases leads to a decrease of activity and stability of the catalysts. The methane conversion decreases rapidly with the increasing concentration of SO2. The results of SEM, EDS, FT-IR and XRD reveal that the presence of SO2 in the feed gases can result in agglomeration and accumulation of sulfur on the surface of Cu/γ-Al2O3 catalysts. Sulfur is in the form of sulfate, which mainly contains copper sulfate (CuSO4). Under the condition of oxygen enrichment, the copper sulfate produced by the absorption of SO2 and oxygen ions on Cu2+ is attached to the surface of catalysts and forms a hard shell, which is the major reason for the sulfur poisoning.
  • 加载中
    1. [1]

      [1] 朱吉钦, 危丽琼, 王盈. 有机废气净化催化剂上甲烷催化燃烧动力学研究[J]. 燃料化学学报, 2007, 35(4): 505-508. (ZHU Ji-qin, WEI Li-qiong, WANG Ying. Intrinsic kinetics of lean methane catalytic combustion on coated noble HPA(KMK) catalyst[J]. Journal of Fuel Chemistry and Technology, 2007, 35(4): 505-508.)

    2. [2]

      [2] YANG Z, GRACE J R, LIM J C, ZHANG L. Combustion of low-concentration coal bed methane in a fluidized bed reactor[J]. Energy Fuels, 2011, 25(3): 975-980.

    3. [3]

      [3] 张力, 张俊广, 杨仲卿. 超低浓度甲烷在Cu/γ-Al2O3催化颗粒流化床中的燃烧特性[J]. 燃料化学学报, 2012, 40(7): 886-891. (ZHANG Li, ZHANG Jun-guang, YANG Zhong-qing. Combustion characteristics of ultra-low content methane in a fluidized bed reactor with Cu/γ-Al2O3 as catalytic particles[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 886-891.)

    4. [4]

      [4] LI Y, GUO Y, XUE B. Catalytic combustion of methane over M (Ni, Co, Cu) supported on ceria-magnesia[J]. Fuel Process Technol, 2009, 90(5): 652-656.

    5. [5]

      [5] 李建中, 吕功煊. Ni-Nb2O5和Ni-Cu-Nb2O5催化甲烷燃烧活性研究[J]. 分子催化, 2005, 19(3): 188-191. (LI Jian-zhong, LV Gong-xuan. Study of methane catalytic combustion over Ni-Nb2O5 and Ni-Cu-Nb2O5[J]. Journal of Molecular Catalysis(China), 2005, 19(3): 188-191.)

    6. [6]

      [6] RUI Z, HUANG Y, ZHENG Y. Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion[J]. J Mol Catal A: Chem, 2013, 372: 128-136.

    7. [7]

      [7] REYES P, FIGUEROA A, PECCHI G. Catalytic combustion of methane on Pd-Cu/SiO2 catalysts[J]. Catal Today, 2000, 62(2/3): 209-217.

    8. [8]

      [8] 周长军, 林伟, 朱月香. SnCuO催化剂上甲烷的催化燃烧性能[J]. 催化学报, 2003, 24(3): 229-232. (ZHOU Chang-jun, LIN Wei, ZHU Yue-xiang. Catalytic combustion of methane over SnCuO catalysts[J]. Chinese Journal of Catalysis, 2003, 24(3): 229-232.)

    9. [9]

      [9] MALYI O I, BAI K, KULISH V V. Density functional theory study of sulfur tolerance of copper: New copper-sulfur phase diagram[J]. Chem Phys Lett, 2012, 533: 20-24.

    10. [10]

      [10] ORDONEZ S, PAREDES J R, DIEZ F V. Sulphur poisoning of transition metal oxides used as catalysts for methane combustion[J]. Appl Catal A: Gen, 2008, 341(1/2): 174-180.

    11. [11]

      [11] IAMARINO M, CHIRONE R, LISI L. Cu/γ-Al2O3 catalyst for the combustion of methane in a fluidized bed reactor[J]. Catal Today, 2002, 75(1): 317-324.

    12. [12]

      [12] 周长军, 林伟, 朱月香, 谢有畅. 氧化锡基甲烷催化燃烧催化剂的硫中毒反应机理[J]. 物理化学学报, 2003, 19(3): 246-250. (Zhou Chang-jun, Lin Wei, Zhu Yue-xiang, Xie You-chang. Mechanism of sulfur poisoning on methane catalytic combustion over SnCuO catalysts[J]. Acta physico-Chimica Sinica, 2003, 19(3): 246-250.)

    13. [13]

      [13] 刘宪云, 高利平. 助剂对PdO/Al2O3催化剂的抗硫中毒性能影响[J]. 化工科技, 2011, 19(2): 25-27. (LIU Xian-yun, GAO Li-ping. Performance of sulfur tolerance on PdO/A12O3 catalysts: Effect of additives[J]. Chemical Process Technology, 2011, 19(2): 25-27.)

    14. [14]

      [14] HAPPEL M, LYKHACH Y, TSUD N. Mechanism of sulfur poisoning and storage: Adsorption and reaction of SO2 with stoichiometric and reduced ceria films on Cu(111)[J]. J Phys Chem C, 2011, 115(40): 19872-19882.

    15. [15]

      [15] 陈家鏞, 夏光祥. 氧化铜与二氧化硫及氧作用生成硫酸铜的动力学分析[J]. 化工学报, 1965, 1(1): 1-12. (CHEN Jia-yong, XIA Guang-xiang. The kinetics of CuO reacting with gaseous SO2 and O2[J]. Journal of Chemical Industry and Engineering, 1965, 1(1): 1-12.)

    16. [16]

      [16] YATES J G, BEST R J. Kinetics of the reaction between sulfur dioxide, oxygen, and cupric oxide in a tubular, packed bed reactor[J]. Ind Eng Chem Proc Des Dev, 1976, 15(2): 239-243.

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    8. [8]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

Metrics
  • PDF Downloads(0)
  • Abstract views(804)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return