Citation: YANG Dong-hua, SHI Bao-bao, WANG Xin-bo, WU Zheng-huang, DOU Tao, ZHENG Zi-liang, DAI Rong. Synthesis and characterization of a new type silicoaluminophosphate SAPO-53 molecular sieves[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 625-634. shu

Synthesis and characterization of a new type silicoaluminophosphate SAPO-53 molecular sieves

  • Corresponding author: YANG Dong-hua, 
  • Received Date: 17 September 2013
    Available Online: 3 December 2013

    Fund Project: 国家重点基础研究发展规划(973计划,2012CB215002) (973计划,2012CB215002)国家自然科学基金(20973123) (20973123)山西省自然科学基金(2013011041-1)。 (2013011041-1)

  • Highly crystalline SAPO-53 molecular sieves were successfully synthesized under a hydrothermal condition by using hydroxide hexane dual ammonium(R(OH)2) as a template. The samples were characterized by a serious of techniques,including XRD,SEM-EDX,FT-IR,MAS NMR,electrophoresis apparatus,N2 adsorption-desorption and TG-DTG. Various preparation conditions including Si/Al ratio, P/Al ratio, the amount of template and crystallization time for the synthesis of SAPO-53 molecular sieves have been systematically studied. It shows that Si has entered the AlPO4-53 framework mainly with a form of four ligand detected by 29Si MAS NMR. The results reveal that the relative crystallinity of synthesized samples increases firstly and reduces afterward with the increase of time,while the Zeta potential value increases first and then remains unchanged. Compared with the synthesis taking methylamine as a template, the template agent of hydroxide hexane dual ammonium is only half of the amount for the sample synthesis. Furthermore, this method can shorten the crystallization time and reduce the difficulty of synthesis. The apparent growth rate of SAPO-53 molecular sieve is higher than its nucleation rate through the calculation, so the nucleation process is the rate controlling step.
  • 加载中
    1. [1]

      [1] LOK B M, MESSI C A, PATTON R L, KATONAH, GAJEK R T, CANNAN T R, FLANIGEN E M, PLAINS W. Crystalline slilicoaluminophosphates: US, 4440871[P]. 1984-04-03.

    2. [2]

      [2] 王利军, 黄茜丹, 赵伟, 李全芝. SAPO-11分子筛改进合成及正十二烷加氢异构化性能[J]. 化学学报, 2002, 60(6): 1122-1124. (WANG Li-jun, HUANG Qian-dan, ZHAO Wei, LI Quan-zhi. Improved synthesis of SAPO-11 and their n-dodecane hydroisomerization properties[J]. Acta Chimica Sinica, 2002, 60(6): 1122-1124.)

    3. [3]

      [3] 刘红星, 谢在库, 张成芳, 陈庆龄. 用氟化氢-三乙胺复合模板剂合成SAPO-34分子筛[J]. 催化学报, 2003, 24(4): 279-283. (LIU Hong-xing, XIE Zai-ku, ZHANG Cheng-fang, CHEN Qing-ling. Synthesis of SAPO-34 molecular sieve using hydrogen fluoride and triethylamine as composite template[J]. Chinese Journal of Catalysis, 2003, 24(4): 279-283.)

    4. [4]

      [4] 齐国祯, 谢在库, 杨为民, 刘红星, 重思青, 张成芳, 陈庆龄. 甲醇制烯烃反应过程中SAPO-34催化剂积炭动力学研究[J]. 燃料化学学报, 2006, 34(2): 205-208. (QI Guo-zhen, XIE Zai-ku, YANG Wei-ming, LIU Hong-xing, ZHONG Si-qing, ZHANG Cheng-fang, CHEN Qing-ling. Kinetic modeling of coke formation on SAPO-34 catalyst in the transformation of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, 2006, 34(2): 205-208.)

    5. [5]

      [5] MEARIAUDEAU P, TUAN V A, SAPALY G, NGHIEM V T, NACCACHE C. Pore size and crystal size effects on the selective hydroisomerisation of C8 paraffinsover Pt-Pd/SAPO-11, Pt-Pd/SAPO-41 bifunctional catalysts[J]. Catal Today, 1999, 49(1/3): 285-292.

    6. [6]

      [6] 刘维桥, 尚通明, 周全法, 刘平, 任杰, 孙予罕. 金属助剂对Pt/SAPO-11催化剂物化及异构性能的影响[J]. 燃料化学学报, 2010, 38(2): 212-217. (LIU Wei-qiao, SHANG Tong-ming, ZHOU Quan-fa, LIU Ping, REN Jie, SUN Yu-han. Study on the physicochemical and isomerization property of Pt/SAPO-11 catalysts promoted by metallic additive[J]. Journal of Fuel Chemistry and Technology, 2010, 38(2): 212-217.)

    7. [7]

      [7] KIRCHNER R M, GROSSE-KUNSTLEVE R W, PLUTH J J, WILSON S T, BROACH R W, SMITH J V. Structures of as-synthesized AlPO4-53(A), calcined dehydrated AlPO4-53(B), and AlPO4-53(C), a new phase determined by the FOCUS method[J]. Micropor Mesopor Mater, 2000, 39(1): 319-332.

    8. [8]

      [8] ASHBROOK S E, CUTAJAR M, GRIFFIN J M, LETHBRIDGE Z A D, WALTON R I, WIMPERIS S. Transformation of AlPO-53 to JDF-2: Reversible dehydration of a templated aluminophosphate studied by MAS NMR and diffraction[J]. J Phys Chem C, 2009, 113(24): 10780-10789.

    9. [9]

      [9] DONG J X, BAN G Z, ZHAO Q, LIU L, LI J P. Hydrogen storage in several metal-phosphate molecular sieves[J]. AIChE J, 2008, 54(11): 3017-3025.

    10. [10]

      [10] 李建青, 王晓梅, 石梅, 张秀成, 程惠亭. 气相晶化法合成SAPO-34分子筛[J]. 石油化工, 2007, 36(7): 664-669. (LI Jian-qing, WANG Xiao-mei, SHI Mei, ZHANG Xiu-cheng, CHENG Hui-ting. Synthesis of SAPO-34 molecular sieves by gas phase crystallization[J]. Petrochemical Technology, 2007, 36(7): 664-669.)

    11. [11]

      [11] 徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 171-174. (XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Molecular sieve and porous material chemistry[M]. Beijing: Science Press, 2004: 171-174.)

    12. [12]

      [12] 陈树军, 王荣顺. 真空吸气剂PdO粉末的微观结构[J]. 西南交通大学学报, 2010, 45(4): 639-642. (CHEN Shu-jun, WANG Rong-shun. Microstructure analysis of vacuum getter PdO powder[J]. Journal of Southwest Jiaotong University, 2010, 45(4): 639-642.)

    13. [13]

      [13] 刘月明, 张凤美, 代振宇. DPA、DIPA 模板剂结构导向性能的探讨[J]. 石油学报(石油加工), 2000, 16(4): 1-5. (LIU Yue-ming, ZHANG Feng-mei, Dai Zhen-yu. The structure directing characters of DPA and DIPA[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2000, 16(4): 1-5.)

    14. [14]

      [14] AERTS A, FOLLENS LRA, HAOUAS M, CAREMANS T P, DELSUC M A, LOPPINET B, VERMANT J, GODERIS B, TAULELLE F, MARTENS J A, KIRSCHHOCK C E A. Combined NMR, SAXS, and DLS study of concentrated clear solutions used in silicalite-1 Zeolite synthesis[J]. Chem Mater, 2007, 19(14): 3448-3454.

    15. [15]

      [15] BERLI G, COLUCCIA S, PASTORE H O, SUPERTI G B, MARCHESE L, MARTINS G A V. Revisiting the nature of the acidity in chabazite-related silicoaluminophosphates: Combined FTIR and 29Si MAS NMR study[J]. J Phys Chem C, 2007, 111(1): 330-339.

    16. [16]

      [16] 杨德兴, 王鹏飞, 徐华胜, 吕爱玲, 胡杰, 吕待清. 两步晶化法合成纳米SAPO-34分子筛及其催化性能[J]. 高等学校化学学报, 2011, 32(4): 939-945. (YANG De-xing, WANG Peng-fei, XU Hua-sheng, LV Ai-ling, HU Jie, LV Dai-qing. Two-step crystallization synthesis and catalytic performance of nano-scaled SAPO-34 molecular sieve[J]. Chemical Journal of Chinese Universities, 2011, 32(4): 939-945.)

    17. [17]

      [17] BARTHOMEUF D. Topological model for the compared acidity of SAPOs and Si-Al zeolites[J]. Zeolites, 1994, 14(2): 394-401.

    18. [18]

      [18] 胡键, 王建伟, 张昕, 田松柏. 不同硅铝比的SAP0-41分子筛物化性质及催化性能研究[J]. 燃料化学学报, 2007, 35(2): 253-256. (HU Jian, WANG Jian-wei, ZHANG Xin, TIAN Song-bo. A study of physicochemical properties and catalytic performance of SAPO-41 with different ratios of SiO2/A12O3[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 253-256.)

    19. [19]

      [19] 任永利, 王亚权, 米镇涛. Fe-AlPO4-5分子筛的水热晶化过程研究[J]. 化学反应工程与工艺, 2004, 20(3): 209-212. (REN Yong-li, WANG Ya-quan, MI Zhen-tao. Study on hydrothermal crystallization process of Fe-AlPO4-5 molecular sieve[J]. Chemical Reaction Engineering and Technology, 2004, 20(3): 209-212.)

    20. [20]

      [20] SCHNITZER O, YARIV E. Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction[J]. Phys Rev E, 2012, 86(2): 1-16.

    21. [21]

      [21] LEROY P, DEVAU N, REVIL A, BIZI M. Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles[J]. J Colloid Interface Sci, 2013, 410: 81-93.

    22. [22]

      [22] 杨冬花, 赵君芙, 张军亮, 窦涛, 吴忠华, 陈中军. 含铁骨架Fe-Al-EU-1分子筛的设计合成和晶化[J]. 物理化学学报, 2012, 28(3): 720-728. (YANG Dong-hua, ZHAO Jun-fu, ZHANG Jun-liang, DOU Tao, WU Zhong-hua, CHEN Zhong-jun. Designed synthesis and crystallization of Fe-Al-EU-1 zeolites containing framework-iron[J]. Acta Physico-Chimica Sinica, 2012, 28(3): 720-728.)

    23. [23]

      [23] WANG Y S, XU Y P, TIAN Z J, LIN L W. Research progress in ionothermal synthesis of molecular sieves[J]. Chin J Catal, 2012, 33(1): 39-50.

    24. [24]

      [24] 王丽琴, 王相生, 郭新闻, 李刚, 修景海, 刘松. 合成TS-1分子筛的结晶动力学及催化性能研究[J]. 催化学报, 2003, 24(2): 132-136. (WANG Li-qin, WANG Xiang-sheng, GUO Xin-wen, LI Gang, XIU Jing-hai, LIU Song. Study on crystallization kinetics for synthesis of TS-1 zeolite and its catalytic performance[J]. Chinese Journal of Catalysis, 2003, 24(2): 132-136.)

    25. [25]

      [25] DEPLA A, LESTHAEGHE D, VAN Erp T S, AERTS A, HOUTHOOFD K, FAN F, LI C, SPEYBROECK V V, WAROQUIER M, KIRSCHHOCK C E A, MARTENS J A. 29Si NMR and UV-Raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol-gel chemistry[J]. J Phys Chem C, 2011, 115(9): 3562-3571.

    26. [26]

      [26] KIRSCHHOCK C E A, RAVISHANKAR R, JACOBS P A, MARTENS J A. Aggregation mechanism of nanoslabs with zeolite MFI-type structure[J]. J Phys Chem B, 1999, 103(50): 11021-11027.

    27. [27]

      [27] 吴华伟, 赵强, 李晋平. 分子筛A1PO-53, SAPO-34和A1PO-5的甲烷储存研究[J]. 中国科技信息, 2011, 15(20): 52-57. (WU Hua-wei, ZHAO Qiang, LI Jin-ping. Methane storage in aluminum-phosphate molecular sieve A1PO-53, SAPO-34 and A1PO-5[J]. China Science and Technology Information, 2011, 15(20): 52-57.)

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    7. [7]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    13. [13]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    16. [16]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    19. [19]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    20. [20]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(0)
  • Abstract views(565)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return