Citation: FAN Qi-yuan, BAI Xue, ZENG Shang-hong. CeO2/CuO catalysts prepared by surfactant-template method for preferential CO oxidation in H2-rich stream[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 603-608. shu

CeO2/CuO catalysts prepared by surfactant-template method for preferential CO oxidation in H2-rich stream

  • Corresponding author: BAI Xue, 
  • Received Date: 16 December 2013
    Available Online: 24 February 2014

  • A series of CeO2/CuO catalysts were prepared by surfactant-template method and characterized by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction (H2-TPR) and N2 sorption; their catalytic performance for preferential oxidation of CO (CO-PROX) in H2-rich stream was investigated. The results show that the 4 nm CeO2 particles with cubic fluorite structure are agglomerated into small clusters and dispersed on the bulk CuO; CeO2/CuO may belong to a type of reverse supported catalyst on the basis of particle size distribution. There are two kinds of active sites in the CeO2/CuO system, i.e. the CuO sites for CO chemisorption and the CeO2 sites supplying oxygen vacancies; the coexistence of two-kind surface sites on the contact interface is capable of promoting the preferential oxidation of CO.
  • 加载中
    1. [1]

      [1] 张志强, 郑军卫. 国际氢经济竞争发展态势及我国的对策[J]. 中国科学院院刊, 2006, 21(5): 418-422. (ZHANG Zhi-qiang, ZHENG Jun-wei. Competition development trend of international hydrogen economy and China's countermeasures[J]. Journal of Chinese Academy of Sciences, 2006, 21(5): 418-422.)

    2. [2]

      [2] MORETTIA E, STORAROA L, TALONA A, LENARDA M, RIELLO P, FRATTINI R, DEYUSO M D V M, JIMENEZ-LOPEZ A, RODRIGUEZ-CASTELLON E, TERNERO F, CABALLERO A, HOLGADO J P. Effect of thermal treatments on the catalytic behaviour in the CO preferential oxidation of a CuO-CeO2-ZrO2 catalyst with a flower-like morphology[J]. Appl Catal B: Environ, 2011, 102(3/4): 627-637.

    3. [3]

      [3] MOZER T S, PASSOS F B. Selective CO oxidation on Cu promoted Pt/Al2O3 and Pt/Nb2O5 catalysts[J]. Int J Hydrogen Energy, 2011, 36(21): 13369-13378.

    4. [4]

      [4] JIA A P, JIANG S Y, LU J Q, LUO M F. Study of catalytic activity at the CuO-CeO2 interface for CO oxidation[J]. J Phys Chem C, 2010, 114(49): 21605-21610.

    5. [5]

      [5] CÁMARA A L, KUBACKA A, SCHAY Z, KOPPÁNY Z, MARTÍNEZ-ARIAS A. Influence of calcination temperature and atmosphere preparation parameters on CO-PROX activity of catalysts based on CeO2/CuO inverse configurations[J]. J Power Sources, 2011, 196(9): 4364-4369.

    6. [6]

      [6] AVGOUROPOULOS G, IOANNIDES T, PAPADOPOULOU C, BATISTA J, HOCEVAR S, MATRALIS H K. A comparative study of Pt/γ-Al2O3, Au/γ-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen[J]. Catal Today, 2002, 75(1/4): 157-167.

    7. [7]

      [7] CHIN S Y, ALEXEEV O S, AMIRIDIS M D. Preferential oxidation of CO under excess H2 conditions over Ru catalysts[J]. Appl Catal A: Gen, 2005, 286(2): 157-166.

    8. [8]

      [8] VALDEN M, PAK S, LAI X, GOODMAN D W. Structure sensitivity of CO oxidation over model Au/TiO2 eatalysts[J]. Catal Lett, 1998, 56(l): 7-10.

    9. [9]

      [9] SU S C, CARSTENS J N, BELL A T. A study of the dynamics of Pd oxidation and PdO reduction by H2 and CH4[J]. J Catal, 1998, 176(l): 125-135.

    10. [10]

      [10] LIU W, FLYTZANI-STEPHANOPOULOS M. Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity[J]. J Catal, 1995, 153(2): 304-316.

    11. [11]

      [11] LIU W, FLYTZANI-STEPHANOPOULOS M. Total oxidation of carbon-monoxide and methane over transition metal fluorite oxide composite catalysts: Ⅱ. Catalyst characterization and reaction-kinetics[J]. J Catal, 1995, 153(2): 317-332.

    12. [12]

      [12] AVGOUROPOULOS G, IOANNIDES T, MATRALIS H K, BATISTA J, HOCEVAR S. CuO-CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen[J]. Catal Lett, 2001, 73(l): 33-40.

    13. [13]

      [13] MARTÍNEZ-ARIAS A, HUNGRÍA A B, FERNÁNDEZ-GARCÍA M, CONESA J C, MUNUERA G. Interfacial redox processes under CO/O2 in a nanoceria-supported copper oxide catalyst[J]. J Phys Chem, 2004, 108(46): 17983-17991.

    14. [14]

      [14] LUO M F, MA J M, LU J Q, SONG Y P, WANG Y J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation[J]. J Catal, 2007, 246(l): 52-59.

    15. [15]

      [15] HORNES A, HUNGRIA A B, BERA P, LOPEZ C A, FERNANDEZ-GARCIA M, MARTINEZ-ARIAS A, BARRIO L, ESTRELLA M, ZHOU G, FONSECA J J, HANSON J C, RODRIGUEZ J A. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream[J]. J Am Chem Soc, 2010, 132(l): 34-35.

    16. [16]

      [16] MACIEL C G, SILVA T D F, PROFET L P R, ASSAF E M, ASSAF J M. Study of CuO/CeO2 catalyst with for preferential CO oxidation reaction in hydrogen-rich feed (PROX-CO)[J]. Appl Catal A: Gen, 2012, 431-432(l): 25-32.

    17. [17]

      [17] KUNDAKOVIC L, FLYTZANI-STEPHANOPOULOS M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems[J]. Appl Catal A: Gen, 1998, 171(l): 13-29.

    18. [18]

      [18] AVGOUROPOULOS G, IOANNIDES T. Effect of synthesis parameters on catalytic properties of CuO-CeO2[J]. Appl Catal B: Environ, 2006, 67(l/2): 1-11.

    19. [19]

      [19] ZOU H B, DONG X F, LIN W M. Selective CO oxidation in hydrogen-rich gas over CuO/CeO2 catalysts[J]. Appl Surf Sci, 2006, 253(5): 2893-2898.

    20. [20]

      [20] WANG S P. An investigation of catalytic activity for CO oxidation of CuO/CexZr1-xO2 catalysts[J]. Catal Lett, 2008, 121(l): 70-76.

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    9. [9]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    10. [10]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    13. [13]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    14. [14]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    15. [15]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    16. [16]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    17. [17]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    18. [18]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

Metrics
  • PDF Downloads(0)
  • Abstract views(413)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return