Citation: WANG Yong-zhao, CHENG Hui-min, FAN Li-yuan, SHI Jing, ZHAO Yong-xiang. Effect of calcination temperature on catalytic performance of Pd-Cu/attapulgite clay catalyst for CO oxidation at room temperature[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 597-602. shu

Effect of calcination temperature on catalytic performance of Pd-Cu/attapulgite clay catalyst for CO oxidation at room temperature

  • Corresponding author: WANG Yong-zhao,  ZHAO Yong-xiang, 
  • Received Date: 11 November 2013
    Available Online: 6 January 2014

    Fund Project: 国家自然科学基金(21073114) (21073114)山西省青年科技研究基金(2010021008-3)。 (2010021008-3)

  • Using attapulgite clay(APT) as the support, the catalysts Pd-Cu/APT were prepared by wet impregnation method. The effect of calcination temperature on the catalytic performance for CO oxidation at room temperature was investigated in a fixed-bed continuous flow reactor. Structure and property of the catalysts were characterized by N2-physisorption, XRD, TG, FT-IR and H2-TPR. The results showed that as the calcination temperature increased, structure and texture of the catalysts changed due to the desorption of water in the support. Cu species changed from Cu(OH)Cl to CuO gradually, while interactions between highly dispersed Pd and Cu species increased firstly and then decreased. The catalyst calcined at 300 ℃ possessed the highest surface area, dispersed Cu(OH)Cl, and strong interaction between Pd and Cu species, which significantly improved the reducibility of the catalyst. At the reaction conditions of CO 0.5%, GHSV 6 000 h-1, water content 3.3% and room temperature, the catalyst was able to maintain its activity for CO complete oxidation more than 800 min. Calcination temperatures higher or lower than 300 ℃ caused the lower catalytic activity.
  • 加载中
    1. [1]

      [1] QI C X, SU H J, GUAN R G, XU X F. An investigation into phosphate-doped Au/alumina for low temperature CO oxidation[J]. J Phys Chem, 2012, 116(33): 17492-17500.

    2. [2]

      [2] LI L, WANG A Q, QIAO B T, LIN J, HUANG Y Q, WANG X D, ZHANG T. Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism[J]. J Catal, 2013, 299: 90-100.

    3. [3]

      [3] SATSUMA A, OSAKI K, YANAGIHARA M, OHYAMAO J, SHIMIZU K. Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts[J]. Appl Catal B: Environ, 2013, 132-133: 511-518.

    4. [4]

      [4] JONES C, TAYLOR S H, BURROWS A, CRUDACE M J, KIELY C J, HUTCHINGS G J. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation[J]. Chem Commun, 2008, 14: 1707-1709.

    5. [5]

      [5] ZHU H, QIN Z F, SHAN W J, SHEN W J, WANG J G. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments[J]. J Catal, 2005, 233(1): 41-50.

    6. [6]

      [6] WANG Y Z, ZHAO Y X, GAO C G, LIU D S. Origin of the high activity and stability of Co3O4 in low-temperature CO oxidation[J]. Catal Lett, 2008, 125(1/2): 134-138.

    7. [7]

      [7] XIE X W, LI Y, LIU Z Q, HARUTA M, SHEN W J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458: 746-749.

    8. [8]

      [8] LUO M F, MA J M, LU J Q, SONG Y P, WANG Y J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation[J]. J Catal, 2007, 246(1): 52-59.

    9. [9]

      [9] SHEN Y X, LU G Z, GUO Y, WANG Y Q. A synthesis of high-efficiency Pd-Cu-Clx/Al2O3 catalyst for low temperature CO oxidation[J]. Chem Commun, 2010, 46: 8433-8435.

    10. [10]

      [10] CHOI K I, VANNICE M A. CO oxidation over Pd and Cu catalysts Ⅱ. Unreduced bimetallic PdCl2-CuCl2 dispersed on Al2O3 or carbon[J]. J Catal, 1991, 127: 489-511.

    11. [11]

      [11] WANG L, ZHOU Y B, LIU Q F, GUO Y, LU G Z. Effect of surface properties of activated carbon on CO oxidation over supported Wacker-type catalysts[J]. Catal Today, 2010, 153(3/4): 184-188.

    12. [12]

      [12] FENG Y F, WANG L, ZHANG Y H, GUO Y, GUO Y L, LU G Z. Deactivation mechanism of PdCl2-CuCl2/Al2O3 catalysts for CO oxidation at temperatures[J]. Chin J Catal, 2013, 34(5): 923-931.

    13. [13]

      [13] SHEN Y X, LU G Z, GUO Y, WANG Y Q, GUO Y L, GONG X Q. Study on the catalytic reaction mechanism of low temperature oxidation of CO over Pd-Cu-Clx/Al2O3 catalyst[J]. Catal Today, 2011, 175(1): 558-567.

    14. [14]

      [14] RAKITSKAYA T L, KIOSE T A, OLEKSENKO L P, LUTSENKO L V, DLUBOVSKⅡ R M, VOLKOVA V J. Influence of water content in the Pd(Ⅱ)-Cu(Ⅱ) catalyst fixed on acid-modified basalt tuff on its activity in the carbon monoxide oxidation by oxygen[J]. Russ J Appl Chem, 2012, 85(9): 1339-1344.

    15. [15]

      [15] 王永钊, 张卓, 李凤梅, 赵永祥. Pd-Cu/凹凸棒石黏土催化剂催化CO氧化性能[J]. 工业催化, 2011, 11(19): 75-79. (WANG Yong-zhao, ZHANG Zhuo, LI Feng-mei, ZHAO Yong-xiang. Catalytic performance of Pd-Cu/attapulgite clay catalyst for CO oxidation[J]. Industrial Catalysis, 2011, 11(19): 75-79.)

    16. [16]

      [16] YANG H M, TANG A D, OUYANG J, LI M, MANN S. From natural attapulgite to mesoporous materials: Methodology, characterization and structural evolution[J]. J Phys Chem B, 2010, 114(7): 2390-2398.

    17. [17]

      [17] YOU J, CHEN F, ZHAO X B, CHEN Z G. Preparation, characterization and catalytic oxidation property of CeO2/Cu2+-attapulgite (ATP) nanocomposites[J]. J Rare Earth, 2010, 28(9): 347-352.

    18. [18]

      [18] CAO J L, SHAO G S, WANG Y, LIU Y P, YUAN Z Y. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation[J]. Catal Commun, 2008, 9(15): 2555-2559.

    19. [19]

      [19] 陈丰, 李霞章, 陆晓旺, 王健美, 倪超英, 陈志刚. 凹凸棒石/CeO2复合纳米材料的合成、表征及催化性能[J]. 硅酸盐学报, 2009, 37(1): 52-56. (CHENG Feng, LI Xia-zhang, LU Xiao-wang, WANG Jian-mei, NI Chao-ying, CHEN Zhi-gang. Preparation and characterization of attapulgite/CeO2 nano-composite material and its catalytic performance[J]. Journal of the Chinese Ceramic Society, 2009, 37(1): 52-56.)

    20. [20]

      [20] 徐慧远, 罗靖洁, 严春蓉, 张燕, 尚书勇. 二氧化硅孔结构对CO氧化用担载型纳米金催化剂的影响[J]. 燃料化学学报, 2012, 40(11): 1397-1402. (XU Hui-yuan, LUO Jing-jie, YAN Chun-rong, ZHANG Yan, SHANG Shu-yong. Impact of silica porosity on the catalytic activity of nanosize gold catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1397-1402.)

    21. [21]

      [21] 陈天虎, 王健, 庆承松, 彭书传, 宋垠先, 郭燕. 热处理对凹凸棒石结构、形貌和表面性质的影响[J]. 硅酸盐学报, 2006, 34(11): 1406-1410. (CHEN Tian-hu, WANG Jian, QING Cheng-song, PENG Shu-chuan, SONG Yin-xian, GUO Yan. Effect to heat treatment on structure, morphology and surface properties of palygorskite[J]. Journal of the Chinese Ceramic Society, 2006, 34(11): 1406-1410.)

    22. [22]

      [22] 武应全, 解红娟, 寇永利, 谭理, 韩怡卓, 谭猗生. 焙烧温度对K-Cu/Zn/La/ZrO2催化剂上异丁醇合成的影响[J]. 燃料化学学报, 2013, 41(7): 868-874. (WU Ying-quan, XIE Hong-juan, KOU Yong-li, TAN Li, HAN Yi-zhuo, TAN Yi-sheng. Effect of calcination temperature on performance of K-Cu/Zn/La/ZrO2 for isobutanol synthesis[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7): 868-874.)

    23. [23]

      [23] SOARES O S G P, ÓRFÃO J J M, RUIZ-MARÍNEZ J, SILVESTRE-ALBERO J, SEPLVEDA-ESCRIBANO A, PEREIRA M F R. Pd-Cu/AC and Pt-Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcination and reduction temperatures[J]. Chem Eng J, 2010, 165(1): 578-88.

    24. [24]

      [24] 李娟, 海航, 闫常峰, 胡蓉蓉, 么志伟, 罗伟民, 郭常青, 李文博. 焙烧温度对二甲醚水蒸气重整制氢Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5双功能催化剂性能的影响[J]. 燃料化学学报, 2012, 40(10): 1240-1245. (LI Juan, HAI Hang, YAN Chang-feng, HU Rong-rong, YAO Zhi-wei, LUO Wei-min, GUO Chang-qing, LI Wen-bo. Effect of calcination temperature on properties of Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5 bi-functional catalysts for steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1240-1245.)

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    3. [3]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    9. [9]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    10. [10]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    11. [11]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    14. [14]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    15. [15]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    16. [16]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    17. [17]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    20. [20]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

Metrics
  • PDF Downloads(0)
  • Abstract views(773)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return