Citation: REN Shi-biao, SHEN Zhou, ZHANG Ping, WANG Zhi-cai, LEI Zhi-ping, PAN Chun-xiu, KANG Shi-gang, SHUI Heng-fu. Highly dispersed Ni/SBA-15 catalysts prepared with different nickel salts as nickel precursors:Effects of activation atmospheres[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 591-596. shu

Highly dispersed Ni/SBA-15 catalysts prepared with different nickel salts as nickel precursors:Effects of activation atmospheres

  • Received Date: 16 December 2013
    Available Online: 25 February 2014

    Fund Project: Supported by the National Natural Science Foundation of China (U1361125, U1261208, 21176001, 51174254) (U1361125, U1261208, 21176001, 51174254)

  • With nickel nitrate and nickel acetate as nickel precursors, a series of Ni/SBA-15 catalysts were prepared by using the impregnation method and activating in air or hydrogen atmosphere. The Ni/SBA-15 catalysts were characterized with XRD, H2-TPD, N2 physisorption and online mass spectroscopy. Their catalytic properties were evaluated with hydrogenation of naphthalene as a model reaction. It was shown that activation in hydrogen greatly increased the Ni dispersion and catalytic activity of Ni/SBA-15 prepared with nickel nitrate, while activation in air significantly improved the sample prepared with nickel acetate. In terms of the thermal decomposition products of the catalyst precursors activated in different atmospheres, the affecting mechanism of the activation atmosphere on the Ni/SBA-15 catalysts prepared with different nickel precursors was proposed.
  • 加载中
    1. [1]

      [1] STANISLAUS A, COOPER B H. Aromatic hydrogenation catalysis: A review[J]. Catal Rev Sci Eng, 1994, 36(1): 75-123.

    2. [2]

      [2] WEISSERMEL K, ARPLE H J. Industrial organic chemistry[M]. 4th ed. Weinheim: Wiley-VCH, 2003.

    3. [3]

      [3] DILLEN A J, TERÖRDE R M, LENSVELD D J. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes[J]. J Catal, 2003, 216(1): 257-264.

    4. [4]

      [4] LI F, YI X D, FANG W P. Effect of organic nickel precursor on the reduction performance and hydrogenation activity of Ni/Al2O3 catalysts[J]. Catal Lett, 2009, 130(3/4): 335-340.

    5. [5]

      [5] LIU H C, WANG H, SHEN J H, SUN Y, LIU Z M. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia[J]. Appl Catal A: Gen, 2008, 337(2): 138-147.

    6. [6]

      [6] REN S B, ZHANG P, SHUI H F, LEI Z P, WANG Z C, KANG S G. Promotion of Ni/SBA-15 catalyst for hydrogenation of naphthalene by pretreatment with ammonia/water vapour[J]. Catal Commun, 2010, 12(2): 132-136.

    7. [7]

      [7] LI X K, JI W J, ZHAO J, WANG S J, AU C T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15[J]. J Catal, 2005, 236(2): 181-189.

    8. [8]

      [8] POELS E K, DEKKER J G, LEEUWEN W A V. Hydrothermal sintering of the active phase in alumina supported fixed bed nickel catalysts during reduction[J]. Stud Surf Sci Catal, 1991, 63: 205-214.

    9. [9]

      [9] VOS B, POELS E K, BLIEK A. Impact of calcination conditions on the structure of alumina-supported nickel particles[J]. J Catal, 2001, 198(1): 77-88.

    10. [10]

      [10] DE LOOSDRECHT J V, BARRADAS S, CARICATO E A, NGWENYA N G, NKWANYANA P S, RAWAT M A S, SIGWEBELA B H, VAN BERGE P J, VISAGIE J L. Calcination of Co-based Fischer-Tropsch synthesis catalysts[J]. Top Catal, 2003, 26(1/4): 121-127.

    11. [11]

      [11] SIETSMA J R A, MEELDIJK J D, BREEJEN J P, VERSLUIJS-HELDER M, JOS VAN DILLEN A, DE JONGH P E, DE JONG K P. The preparation of supported NiO and Co3O4 nanoparticles by the nitric oxide controlled thermal decomposition of nitrates[J]. Angew Chem Int Ed, 2007, 46(24): 4547-4549.

    12. [12]

      [12] SIETSMA J R A, FRIEDRICH H, BROERSMA A, VERSLUIJS-HELDER M, JOS VAN DILLEN A, DE JONGH P E, DE JONG K P. How nitric oxide affects the decomposition of supported nickel nitrate to arrive at highly dispersed catalysts[J]. J Catal, 2008, 260(2): 227-235.

    13. [13]

      [13] SIETSMA J R A, MEELDIJK J D, VERSLUIJS-HELDER M, BROERSMA A, JOS VAN DILLEN A, DE JONGH P E, DE JONG K P. Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts: Impregnation, drying, and thermal treatments[J]. Chem Mater, 2008, 20(9): 2921-2931.

    14. [14]

      [14] REN S B, ZHAO R, ZHANG P, LEI Z P, WANG Z C, KANG S G, PAN C X, SHUI H F. Effect of activation atmosphere on reduction behaviors, dispersion and activities of nickel catalysts for hydrogenation of naphthalene[J]. React Kinet Mech Cat, 2014, 111(1): 247-257.

    15. [15]

      [15] KIRUMAKKI S R, SHPEIZER B G, SAGAR G V, CLEARFIELD A. Hydrogenation of Naphthalene over NiO/SiO2-Al2O3 catalysts: Structure-activity correlation[J]. J Catal, 2006, 242(2): 319-331.

    16. [16]

      [16] VELU S, GANGWAL S K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ionics, 2006, 177(7): 803-811.

    17. [17]

      [17] DE JESUS J C, GONZ'ALEZ I, QUEVEDO A, PUERTA T. Thermal decomposition of nickel acetate tetrahydrate: An integrated study by TGA, QMS and XPS techniques[J]. J Mol Catal A, 2005, 228(1): 283-291.

    18. [18]

      [18] HELVEG S, LÓPEZ-CARTES C, SEHESTED J, HANSEN P L, CLAUSEN B S, ROSTRUP-NIELSEN J R, ABILD-PEDERSEN F, NØRSKOV J K. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427(6973): 426-429.

  • 加载中
    1. [1]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    2. [2]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    3. [3]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    17. [17]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    18. [18]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

Metrics
  • PDF Downloads(0)
  • Abstract views(528)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return