Citation: GUO Hai-yan, REN Jun, FENG Gang, LI Chang-sheng, PENG Xing, CAO Duan-lin. Distribution of Al and adsorption of NH3 in mordenite:A computational study[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 582-590. shu

Distribution of Al and adsorption of NH3 in mordenite:A computational study

  • Corresponding author: REN Jun,  FENG Gang, 
  • Received Date: 31 October 2013
    Available Online: 7 January 2014

    Fund Project: Supported by the National Science Foundation of China (21371159) (21371159) the Natural Science Foundation of Shanxi Province (2009011014) (2009011014)Shenzhen Strategic Emerging Industries Special Fund Program of China (GGJS20120619101655715). (GGJS20120619101655715)

  • Dispersion corrected density functional theory (DFT-D2) were employed to investigate the distribution of Al in the framework of H-[Al]MOR and the strengths of Brönsted acid sites by NH3 adsorption. Thermodynamically, the most favorable site for distribution of Al is T2O5, followed by T4O2, T1O7 and T3O1, which are a little higher in energy when Al is incorporated. It was found that the energy differences for Al in different T sites are 0.03~ 0.07 eV, indicating that the Al atoms might distribute in all kinds of four non-equivalent crystallographic tetrahedral sites of MOR. Moreover, it is also suggested that the location of protons plays an important role in the stability of the Al substitution site. In addition, we also computed the adsorption energies for NH3 adsorbed at each crystallographic position of H-[Al]MOR by DFT and DFT-D2, respectively. By comparison, the DFT method always underestimates the substitution energy by 0.41 eV for the adsorption of NH3, indicating that the dispersion correction is necessary to calculate the adsorption of NH3 in H-[Al]MOR. The results show that the Brönsted acid site at T2O5 is stronger than the other acid sites, and the adsorption of NH3 on the Lewis acid sites is clearly weaker than on the Brönsted acid sites.
  • 加载中
    1. [1]

      [1] BURBIDGE B W, KEEN I M, EYLES M K. Physical and catalytic properties of the zeolite mordenite[M]. In: Molecular Sieve Zeolites-II. Adv Chem Ser, 1971, 102: 400-409.

    2. [2]

      [2] LEACH H. Application of molecular sieve zeolites to catalysis[J]. Annu Rep Pro Chem Sect A: Inorg Chem, 1971, 68: 195-219.

    3. [3]

      [3] BUSCA G. Acid catalysts in industrial hydrocarbon chemistry[J]. Chem Rev, 2007, 107(11): 5366-5410.

    4. [4]

      [4] NIWA M, SUZUKI K, KATADA N, KANOUGI T, ATOGUCHI T . Ammonia IRMS-TPD study on the distribution of acid sites in mordenite[J]. J Phys Chem B, 2005, 109(40): 18749-18757.

    5. [5]

      [5] MARIE O, MASSIANI P, THIBAULT-STARZYK F. Infrared evidence of a third brønsted site in mordenites[J]. J Phys Chem B, 2004, 108(16): 5073-5081.

    6. [6]

      [6] BAJPAI P K, RAO M S, GOKHALE K. Synthesis of mordenite type zeolites[J]. Ind Eng Chem Prod Res Dev, 1978, 17(3): 223-227.

    7. [7]

      [7] BAJPAI P K. Synthesis of mordenite type zeolite[J]. Zeolites, 1986, 6(1): 2-8.

    8. [8]

      [8] ALBERTI A. Location of Brønsted sites in mordenite[J]. Zeolites, 1997, 19(5/6): 411-415.

    9. [9]

      [9] ALBERTI A, DAVOLI P, VEZZALINI G. The crystal structure refinement of a natural mordenite[J]. Z Kristallogr -Cryst Mater, 1986, 175(3/4): 249-256.

    10. [10]

      [10] LIU B, GARCÍA-PÍREZ E, DUBBELDAM D, SMIT B, CALERO S. Understanding aluminum location and non-framework ions effects on alkane adsorption in aluminosilicates: A molecular simulation study[J]. J Phys Chem C, 2007, 111(28): 10419-10426.

    11. [11]

      [11] BAN S, VLUGT T J H. Adsorption and diffusion of alkanes in Na-MOR: Modeling the effect of the aluminum distribution[J]. J Chem Theory Comput, 2009, 5(10): 2858-2865.

    12. [12]

      [12] RAMACHANDRAN C E, WILLIAMS B A, VAN BOKHOVEN J A, MILLER J T. Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: Implications for catalytic activity[J]. J Catal, 2005, 233(1): 100-108.

    13. [13]

      [13] BRÄNDLE M, SAUER J. Acidity differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites[J]. J Am Chem Soc, 1998, 120(7): 1556-1570.

    14. [14]

      [14] DEMUTH T, HAFNER J, BENCO L, TOULHOAT H. Structural and acidic properties of mordenite. An ab initio density-functional study[J]. J Phys Chem B, 2000, 104(19): 4593-4607.

    15. [15]

      [15] OUMI Y, KANAI T, LU B, SANO T. Structural and physico-chemical properties of high-silica mordenite[J]. Micropor Mesopor Mater, 2007, 101(1/2):127-133.

    16. [16]

      [16] YUAN S, WANG J, LI Y, PENG S. Siting of B, Al, Ga or Zn and bridging hydroxyl groups in mordenite: an ab initio study[J]. J Mol Catal A: Chem, 2001, 175(1/2):131-138.

    17. [17]

      [17] MAACHE M, JANIN A, LAVALLEY J C, BENAZZI E. FT infrared study of Brnsted acidity of H-mordenites: Heterogeneity and effect of dealumination[J]. Zeolites, 1995, 15(6): 507-516.

    18. [18]

      [18] LAMBEROV A A, KUZNETSOV A M, SHAPNIK M S, MASLIY A N, BORISEVICH S V, ROMANOVA R G, EGOROVA S R. Quantum-chemical investigation of the formation of Lewis acid centers of high-siliceous zeolites[J]. J Mol Catal A: Chem, 2000, 158(1): 481-486.

    19. [19]

      [19] FENG G, LIAN Y Y, YANG D Q, LIU J W, KONG D J. Distribution of Al and adsorption of NH3 and pyridine in ZSM-12: A computational study[J]. Can J Chem, 2013, 91(10): 925-934.

    20. [20]

      [20] ELANANY M, VERCAUTEREN D P, KOYAMA M, KUBO M, SELVAM P, BROCLAWIK E, MIYAMOTO A. H-MOR: Density functional investigation for the relative strength of Brnsted acid sites and dynamics simulation of NH3 protonation-deprotonation[J]. J Mol Catal A: Chem, 2006, 243(1): 1-7.

    21. [21]

      [21] DÍAZ L, SIERRAALTA A, NASCIMENTO MAC, A[WTBZ]Й[WTB1]EZ R. Evaluation of Brnsted sites inside the H-MOR employing NH3: A theoretical study[J]. J Phys Chem C, 2013, 117(10): 5112-5117.

    22. [22]

      [22] HUO H, PENG L, GAN Z, GREY C P. Solid-state MAS NMR studies of Brnsted acid sites in zeolite H-mordenite[J]. J Am Chem Soc, 2012, 134(23): 9708-9720.

    23. [23]

      [23] BLUMENFELD A L, COSTER D, FRIPIAT J J. Broensted acid sites and surface structure in zeolites: A high-resolution 29Si NMR REDOR study[J]. J Phys Chem, 1995, 99(41): 15181-15191.

    24. [24]

      [24] JACOBS W, DE HAAN J, VAN DE VEN L, VAN SANTEN R. Interaction of ammonia with Brnsted acid sites in different cages of zeolite Y as studied by proton MAS NMR[J]. J Phys Chem, 1993, 97(40): 10394-10402.

    25. [25]

      [25] JACOBS W P J H, VAN WOLPUT J H M C, VAN SANTEN R A. An in situ Fourier transform infrared studyof zeolitic vibrations: Dehydration, deammoniation, and reammoniation of ion-exchanged Y zeolites[J]. Zeolites, 1993, 13(3): 170-182.

    26. [26]

      [26] KRESSE G, FURTHM LLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15-50.

    27. [27]

      [27] KRESSE G, FURTHM LLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186.

    28. [28]

      [28] KERBER T, SIERKA M, SAUER J. Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory[J]. J Comput Chem, 2008, 29(13): 2088-2097.

    29. [29]

      [29] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15): 1787-1799.

    30. [30]

      [30] PERDEW JP, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.

    31. [31]

      [31] BLÖCHL P E, FÖRST C, SCHIMPL J. Projector augmented wave method: ab initio molecular dynamics with full wave functions[J]. Bull Mater Sci, 2003, 26(1): 33-41.

    32. [32]

      [32] BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24):17953-17979.

    33. [33]

      [33] REN L M, GUO Q, ZHANG H Y, ZHU L F, YANG C G, WANG L, MENG X J, FENG Z C, LI C, XIAO F S. Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals[J]. J Mater Chem, 2012, 22(14): 6564-6567.

    34. [34]

      [34] ORTMANN F, BECHSTEDT F, SCHMIDT W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Phys Rev B, 2006, 73(20): 205101.

  • 加载中
    1. [1]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    2. [2]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    3. [3]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    4. [4]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    7. [7]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    8. [8]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    10. [10]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    11. [11]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    12. [12]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    13. [13]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    14. [14]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    15. [15]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    18. [18]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    19. [19]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    20. [20]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

Metrics
  • PDF Downloads(0)
  • Abstract views(332)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return